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Al. Potential Negative Social Impact

Conditional image-to-video models can be used for un-
ethical purposes [8], e.g., creating videos of celebrities for
fake news spreading. We will restrict the usage of our mod-
els to research purposes only. We also plan to investigate
some fake video detection techniques [ 1] that may be effec-
tive in detecting fake videos like the ones generated by our
methods.

A2. Additional Experiments

A2.1. Additional Ablation Study on Network Ar-
chitecture

To evaluate the performance difference of our proposed
LFDM with different architectures, we change the depth of
the image decoder €2 in stage-one LFAE (Table A1) and the
3D U-Net ¢y in stage-two DM (Table A2). We experiment
with different settings on MUG dataset to generate videos
of 128 x 128 frame resolution.

In our default setting, the image decoder {2 in stage-one
LFAE is implemented with a network including 6 residual
blocks and 2 up-sampling blocks. In Table A1, we compare
using different network depths for the image decoder {2 in
stage-one LFAE . We add four extra residual blocks to the
decoder ). So the number of residual blocks is increased
from 6 to 10. Then we only retrain this deeper decoder
in stage one, while keeping all the remaining modules un-
changed. As Table A1 shows, using a deeper image decoder
shows slightly better self-reconstruction performance (as
measured by L, error) but fails to generate higher-quality
videos (as measured by FVD). Therefore, we keep using 6
residual blocks in our experiments.

In our default setting, the denoising network ¢y employs
a 3D U-Net architecture including 4 down-sampling and 4
up-sampling 3D convolutional blocks, where the channel
multipliers are (1, 2, 4, 8) with a base channel of 64. That
is, from highest to lowest resolution, the 4 down- or up-
sampling blocks in € use (1 x 64, 2 x 64, 4 x 64, 8 x
64) channels, respectively. In Table A2, we compare using
different channel multipliers in stage-two DM . We add one
more layer to the down-sampling and up-sampling blocks
of the 3D U-Net and the channel multipliers are (1, 2, 4, 8,
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# Residual Blocks | L; error| | FVD]
6 0.418 32.09
10 0.371 32.83

Table Al. Comparison using different numbers of residual blocks
in the image decoder 2 of stage-one LFAE.

Channel Multipliers | FVD]
(1,2,4,8) 32.09
(1,2,4,8,16) 68.07

Table A2. Comparison using different channel multipliers in the
network €g of stage-two DM.

16) with a base channel of 64. We retrain this deeper DM
in stage two with 1,200 training epochs as in our previous
simpler DM training. We keep using the same stage-one
LFAE. From Table A2, one can observe that using more
layers in DM led to decreased performance. Therefore, we
adopt the simpler (1, 2, 4, 8) as the default setting of channel
multipliers in our stage-two DM.

A2.2. Additional Analysis of Flow and Occlusion
Maps
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Figure Al. Visualization of flow and occlusion map. [Ref. +
Flow] is generated by applying the flow to reference image; note
the change in head pose and the shape of eyes and mouth after
applying flow. Occlusion map further masks the eyes and mouth to
help decoder generate novel pixels for these parts in output image.

Figure Al shows the visualization of flow and occlu-
sion map of one example video frame from MUG dataset.
As illustrated in the caption of Fig. Al, without using oc-
clusion map, decoder may need to learn which regions
should be kept and which regions should be masked and
repainted. Our additional experiments show that retraining
LFAE without occlusion maps increases the L; error of self-
reconstruction from 0.418 to 0.450 on MUG dataset.



A2.3. Comparison of Inference Time among Differ-
ent Models

Table A3 shows the average inference time of each
method to generate one video when using batch size 10 on
one NVIDIA A100 GPU on MUG dataset. Note that VDM
uses 200-step DDIM while both LDM and LFDM employ
1000-step DDPM.

Model | ImaGINator VDM LDMg LEDMg, | LDMs LFDM s
Time(s) 0.9 23.1 3.0 38 255 36.0

Table A3. Inference time comparison among different methods.

A3. More Discussion about Future Work

Several limitations and some future work are discussed
in Section 5 of the paper. Here we elaborate more on future
work about LFDM. One future direction is to enable the
generation of a video with changing background (or con-
text). We plan to first utilize our LFDM to generate a video
describing the motion of foreground subject, and then de-
sign another generative network conditioned on each gen-
erated foreground frame to synthesize the changing back-
ground for each frame. In addition, to enhance the gener-
alization ability of LFDM on generating diverse motions of
more categories, we plan to collect more labeled training
video datasets and apply some continual/incremental learn-
ing techniques such as [4—7] to train our LFDM. Finally, in
our experiments (Table 6), we noticed that 10-step DDIM
can achieve acceptable generation performance with faster
sampling speed, suggesting it may have greater potential
with better hyperparameter settings. To explore these set-
tings, including diffusion sampling steps, we plan to em-
ploy some recent hyperparameter optimization techniques
such as [2, 3,9].

Ad4. Information about Attached Videos

We attach seven MP4 files of example video clips gener-
ated by our proposed method in Supp. materials'. All the
given images are testing (unseen) images.

* mug.mp4 shows the synthesized video clips display-
ing all 7 expressions of one subject from MUG dataset.

* mhadl.mp4 and mhad2.mp4 include the generated
video clips for 26 actions of one subject from MHAD
dataset. We exclude the action sif to stand because the
subject in the given image is standing.

* natops.mp4 shows the synthesized video clips con-
taining all 24 gestures of one subject from NATOPS
dataset.

IThese videos are also available in https://github.com/
nihaomiao/CVPR23_LFDM.

* new_domain.mp4 shows the synthesized video clips
including 4 expressions of four subjects from Face-
Forensics dataset. “Original” means directly applying
our LFDM pretrained on MUG dataset. “Finetuned”
means that the image decoder is finetuned with the
training videos from FaceForensics dataset. Note that
other modules including stage-two DM are still un-
changed during finetuning. From this video, one can
observe that our original LFDM can generate accept-
able results for given subject images from a new do-
main and achieve better performance when the decoder
is finetuned with training videos from the new domain.

* mug_ddim.mp4 shows the synthesized video clips
containing 4 expressions of four subjects from MUG
dataset. “DDIM-10" means using 10-step DDIM for
diffusion sampling while “DDPM-1000" is our de-
fault 1000-step DDPM sampling strategy. From this
video, one can observe that 10-step DDIM can gen-
erate visually-acceptable videos with faster sampling
speed (0.3s per video vs. 36s per video when using
DDPM-1000). But note that the FVD score of DDPM-
1000 is still noticeably better than DDIM-10 (32.09 vs.
50.18) so we keep DDPM-1000 as our default setting.

* sotamp4 is a video for comparison between our
proposed LFDM and several other models including
ImaGINator, VDM, and LDM. We show synthesized
video clips by each model on 3 subjects from MUG,
MHAD, and NATOPS datasets. The video frames of
ground truth (GT) and results of LDM and our LFDM
have 128 x 128 resolution while results of ImaGINator
and VDM are 64 x 64. The original video clips gen-
erated by ImaGINator only contain 32 frames. So we
repeat the first frame and the last frame four times to
make all the displaying videos have 40 frames.
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