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In this supplementary document, we provide additional
experiments in Sec. A, describe more implementation de-
tails in Sec. B, discuss the computational overhead in Sec. C
and discuss the limitation in Sec. D. Finally, we show more
qualitative results in Sec. E. In this document, references
that point to the main manuscript will be referenced as “P-
”.

A. More Experiment Results

A.1. Qualitative Comparison on Self-captured Data

To verify the generalization performance of our method,
we recorded several video sequences that capture the scene
from near to far. We show the results in Fig. A where only
accurate matches whose epipolar error is less than 0.5 pixel
are drawn. To compute the epipolar error, we first recover
the camera pose of the video sequence through the tech-
nique of structure from motion [9]. It can be seen that
our method stably obtains dense and accurate matches. On
the contrary, other methods struggle to achieve sufficient
matches when the image pair suffer from large-scale vari-
ant. More qualitative results can be found in our supple-
mentary video.

A.2. Two-view Reconstruction

Since our method achieves high-precision matches that
are densely and uniformly distributed in the images, we can
obtain semi-dense reconstruction by simply triangulating
the matches in a image pair. As shown in Fig. B, although
the image pair suffer from viewpoint, scale ,and illumina-
tion variant, our method enables us to recover semi-dense
point cloud that is high-quality. More qualitative results can
be found in our supplementary video.

*Junjie Ni and Yijin Li contributed equally to this work.
†Guofeng Zhang is the corresponding author.

A.3. Evaluation of Inlier Coverage on MegaDepth

Apart from matching precision and matching coverage
shown in Table P-3, here we evaluate a new metric that both
consider the accuracy and the distribution of the matches.
The metric is inlier coverage. Compared with matching
coverage, the inlier coverage only considers the distribution
of accurate matches where a match is regarded as accurate if
its epipolar error is less than a threshold. In Fig. C, we show
the mean inlier coverage across all resolutions within differ-
ent error thresholds. It can be seen that our method achieves
much higher inlier coverage within all error threshold.

A.4. Visualization of the Area Transportation

As shown in Fig. D, PATS can detect the related region
straightforwardly for patches in the source images and com-
pute accurate areas for them. Therefore, we can generate
correct new image pairs after resizing the associated regions
to the same scale and then match them in more detail in the
following iterations, which reduces a big and hard matching
problem to many small and simple ones.

A.5. Failure Cases

Even though PATS is much more robust than other meth-
ods in scale variation, it may still fails when encountering
extreme viewpoint change. In Fig. E, we visualize two fail-
ure examples for PATS on the ScanNet dataset where the
image pairs are under extreme viewpoint change and have
very limited overlapping regions.

B. Implementation Details
B.1. Architecture Details

Feature Extraction. In the first layer, we extract 512-
dimensional features at each of the three pyramid levels
in images, then reduce the feature dimensions to 256, 128,
and 64 dimensions through MLP networks, and concatenate
them, resulting features with 448 dimensions. In the second
level, we reduce the 448-dimensional features from the first
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Figure A. Qualitative comparison on our self-captured data. Our method stably obtains dense and accurate matches. On the contrary, other
methods are struggle to achieve sufficient matches when the image pair suffer from large scale variant.

Figure B. The semi-dense point cloud reconstructed through two-view triangulation. Although the image pair suffer from viewpoint, scale
and illumination variants, our method are capable of recovering semi-dense point cloud that are high-quality.

level to 8 dimensions by an MLP network and then con-
catenate them with the new 256-dimensional features, re-
sulting 264-dimensional features. In the third layer, consid-
ering insufficient local information in this layer, we further
add the output of each convolutional layer from the second
layer with the corresponding third-layer features to ensure
adequate encoding of information and finally obtains 128-

dimensional features. The number of transformer layers is
set as 9, 9, and 5 for each of the three iterations.
Variants of Concentration Loss. During training, we em-
ploy a variant of concentration loss, which is defined as:

Lc =
1

|Mi|
∑

(i,j)∈Mi,j′ /∈Bi

(Pi,j′ + PM+1,j′) (1)



Figure C. Evaluation of inlier coverage on the MegaDepth dataset.
Our method achieves much more higher inlier coverage than other
methods within all error threshold.

where line M+1 of P refers to the rubbish bin, and PM+1,j′

means that we want the area of every patch in the bounding
box not to be transported to the trash. Empirically, we found
that this slight modification leads to faster convergence.
Setting in Different Layers. In our experiment, we do not
conduct image resizing and patch trimming after the second
layer considering the efficiency of our implementation. Fur-
thermore, we do not conduct flood fill when computing the
bounding box in the third layer. Instead, we fix it with the
size of 5× 5.

B.2. Training Data

MegaDepth. Based on the training split from Super-
Glue [8], we select the image pairs from the MegaDepth
dataset if they co-view more than 50 map points. Then,
with the ground truth depth map, we divide the source im-
age into 32 × 32 patches and re-project each center point of
the patches into the target images. We consider it as a pos-
itive sample if the re-projection points have valid ground
truth depth. We regard it as a negative sample if the re-
projection fall outside the target image. Finally, we select
those image pairs that include more than 20 positive sam-
ples and more than 1 negative sample as our training set.
ScanNet. Based on the training split from SuperGlue [8],
we select the image pairs from the video sequences with an
fixed interval. The pairs are selected with an interval of 100
frames for training the first layer and with an interval of 50
frames for training the rest layers.

B.3. Training Details

In order to adapt our model to multiple resolutions and
to converge faster, we choose to train our first layer of the
network on 640 × 480 resolution images with a batch size
of 128 at first and then fine-tune on 1600 long-edge resized
image pairs with a batch size of 4. We train the second and

third layers on 640 × 480 resolution images. Furthermore,
we utilized 3 RTX3090s to train our model, and fine-tuned
it on 1600 long-edge resized image pairs using 4 RTX3090s

B.4. Experiment Details

Pose estimation. We set the RANSAC threshold for pose
estimation in outdoor cases as 0.25 pixel, while in indoor
cases we set it to 0.4 pixel. We pad the images to make
them divisible by the patch size in our first layer, which is
32× 32.
Building Up Extreme-scale Dataset. We sample 1000 im-
age pairs from the MegaDepth dataset. The source images
are resized to 640 × 480, and we manually scale the target
image to five different resolutions from 320 to 1600 along
the longer side, which make up our extreme-scale dataset.
To make the resolution of the image pair equal-sized, we fill
the smaller image with an unrelated background image that
has been resized to equal the size of the other image in the
image pair. We show two sample pairs and corresponding
matching results in Fig. F.
Visual Localization on the Aachen day-night Dataset.
We use the visual localization toolbox HLoc [7] for pose
estimation on the Aachen day-night dataset [12]. HLoc fol-
lows the common Structure-from-Motion (SfM) pipeline.
It first reconstructs a 3D model using the local features
and matches and then consecutively registers the repeat-
able keypoints in the new image into the model. However,
our method and other detector-free methods [1, 10] directly
regress matches from a pair of images and thus do not obtain
repeatable keypoints across multiple images. Specifically,
To address the problem, previous works [10,13] either takes
average among a patch or takes the most plausible point po-
sitions as the keypoints. Inspired by them, we quantize our
matches by their weighted average positions to represent
key points close to 4 pixels from each other, which means
sacrificing pixel-level accuracy here, and with more obser-
vations, we compute the average position on more points
and therefore sacrifice more pixel-level precision. There-
fore, we get much better localization results on the night
track of Aachen day-night with 12984 database image pairs,
while we get slightly worse localization results on the full
track of Aachen day-night v1.1 with 133066 database im-
age pairs. After quantization, we only keep one point in an
8 × 8 gird, thus removing duplicate matches. Although this
is not a perfect solution, it is better than only using point
observations from source images.

B.5. Definition of Evaluation Metrics

Here we explain the matching precision and matching
coverage metrics for evaluation on the proposed extreme-
scale dataset. Matching precision measures the ratio of ac-
curate matches where a match is defined as accurate if its
epiploar error is less than 0.5 pixel. The matching cover-



Figure D. The Visualization of Patch Area Transportation. After patch area transportation, we find the corresponding position in the
target image p̂i for each source patch i, and then determine the window size to be cropped. The window size in the source image is fixed
by e and the window size in the target image is computed from transportation matrix P, which ensures the target window covers the source
window’s content. After resizing cropped windows, the image content is aligned to the same scale, which eases the feature extraction. The
color in the target images indicates the transportation area where the bright color represents the big transportation area and the dark color
represents the small transportation area.

Figure E. Failure Cases. We visualize two failure cases for PATS
on the ScanNet dataset where the image pairs are under extreme
viewpoint changes.

age, on the other hand, validates the distribution of match-
ing, which is introduced in colmap [9]. Given an image pair,
we re-project the pixels from the source image to the target
image via the camera pose and its depth to obtain the co-
visible area between the image pair. Then, we partition the
area into a grid with equal-sized cells of 8 × 8. Each cell
is labeled full if an accurate match locates within it, other-
wise, it is empty. The matching coverage is computed as the
full cell rate. For the AUC metrics used on the pose estima-
tion, please refer to SuperGlue [8]. For the AEPE and Fl-all
metrics used on the optical flow, please refer to COTR [5].

C. Computational Overhead
Running on NVIDIA RTX 3090, PATS (900ms) is

slower than LoFTR (64ms) but is comparable with
PDC-Net+ (850ms) when processing 640×480 images.
Besides, PATS (5.0GB) occupies more memory than
LoFTR (3.6GB) but less memory than PDC-Net+(5.6GB).
However, thanks to the scale-adaptive subdivision, for
1600×1200 images, PATS (8.3GB) consumes less memory

than LoFTR (22GB) and PDC-Net+(23GB).

D. Limitations
Our current system has some limitations, which could be

fixed in future works. First, in this work, we focus on solv-
ing scale problems through our patch area transportation
and subdivision. Currently, we do not consider the match-
ing challenge brought by other geometric deformations like
rotation. It would be an interesting topic to integrate these
geometric transformations (e.g., rotation, homography, and
affine) into our transportation-based framework. Another
problem is that our method is not fast enough. It takes
about 900ms to process a 640 ×480 color image on a single
GPU (NVIDIA RTX 3090), which is acceptable for down-
stream applications like image editing and structure from
motion(SFM) but might be insufficient for SLAM. Note
that, in this work, we did not optimize the network architec-
ture for run-time efficiency, and many standard approaches,
such as [3, 4, 6], can be directly adopted. Lastly, removing
the regular square shape of the patch may further improve
the quality, and we will explore deformable patches in fu-
ture work.

E. More Visualizations
We visualize more qualitative results on

YFCC100M [11] and Scannet [2] dataset in Fig. G
and Fig. H. Compared with other methods, PATS achieves
dense and accurate feature matching, which both contribute
to high-precision pose estimation and visual localization.



Figure F. Two sample pairs and corresponding matching results on the extreme-scale dataset. The source images are resized to 640× 480
in all cases. The target images are scaled to different resolutions from 256 to 1600 along the longer side. We show two cases where the
target image have the resolutions of 1600 and 256, respectively. To make the resolution of the image pair equal-sized, we fill the smaller
image with an unrelated background image which have already been resized to be equal-sized with the larger one.
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Figure G. More qualitative comparison on Scannet and YFCC100M dataset. These images show our superiority over accuracy and cover-
age, which is why our method outperforms previous methods in pose estimation. The matched features are visualized as the same color.
We have filtered incorrect matches that have large epipolar error.
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Figure H. More qualitative comparison on Scannet and YFCC100M dataset. These images show our superiority over accuracy and cover-
age, which is why our method outperforms previous methods in pose estimation. The matched features are visualized as the same color.
We have filtered incorrect matches that have large epipolar error.
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