
Learning 3D Scene Priors with 2D Supervision
Supplementary Material

Yinyu Nie1 Angela Dai1 Xiaoguang Han2 Matthias Nießner1

1Technical University of Munich 2The Chinese University of Hong Kong (Shenzhen)

In this supplementary material, we provide details of our
network architecture in Sec. A, additional details of loss
function design in Sec. B, data collection setup for 3D-Front
in Sec. C, latent vector optimization setup for single-view
reconstruction in Sec. D, additional details of baselines in
Sec. E, additional shape retrieval details in Sec. F, addi-
tional ablation studies in Sec. G, and more qualitative re-
sults on scene synthesis and single-view reconstruction in
Sec. H. Our code and data will be publicly released.

A. Network Specifications
We detail the full list of layer parameters in this sec-

tion. We denote the MLP layers in our network uniformly
by MLP[l1, l2, ..., ld], where li is the number of neurons in
the i-th layer. Each fully connected layer is followed by
a ReLU layer except the final one. We set the latent hy-
persphere dimension Dz=512 in Sec. 3.1. Every generated
object feature x1, ...,xN and the start token x0 are with the
dimension of Dz=512 as well.

A.1. Permutation-invariant Transformer

From the input latent vector z ∈ RDz , we use a trans-
former to generate N object features autoregressively. N
is the maximal number of objects in a scene. For ScanNet
scenes [4], we use N = 53. For 3D-Front [6] bedrooms and
living rooms, we use N = 13, 28, respectively. We use the
transformer library from [1] to build the architecture. Since
our method does not require 3D supervision, we train the
transformer without using teacher-forcing strategy.

Transformer Encoder With the previous object features
x0,x1, ...,xk−1 as input, we adopt a transformer encoder
to produce the scene context feature Fk ∈ Rk×512. The en-
coder consists of a single layer of multi-head self attention
without positional encoding, followed by a feed forward
network. We use four heads in our multi-head attention,
with the input and output dimension dmodel=512. The feed
forward network is a two-layer MLP[1024, 512] but with
GeLU activation. For other parameters we keep the default
setting as in [1].

Figure 1. Network architecture details in layout and shape de-
coders.

Transformer Decoder The transformer decoder gener-
ates the next object feature xk from Fk ∈ Rk×512. It is a
single layer of multi-head cross attention without positional
encoding, followed by a feed forward network. Similar to
the encoder, we use four heads in the cross attention mod-
ule with dmodel=512. For the cross attention module, we
use the scene context Fk as keys and values, and the latent
vector z as the query to infer the next object xk. Simi-
lar to the encoder, the feed forward network is a two-layer
MLP[1024, 512] with GeLU activation. We keep the default
setting for other parameters.

This generates an object feature sequence {xk}, xk ∈
R512, k = 1, ..., N , from our transformer.

A.2. Layout and Shape Decoder

For each object feature xk, we decode its class label
lk ∈ L, axis-aligned 3D bounding box with size sk ∈ R3

and center ck ∈ R3, as well as completeness score pk, via
our layout decoder, and decode its mesh surface Sk via our
shape decoder. We detail the layer specifications with pa-
rameters in Fig. 1. For sk, we process it with a SoftPlus
layer to make sure object sizes are positive values. Nc de-
notes the number of object class categories. For ScanNet,
we use the official ‘nyu40class’ object category split and use
19 common indoor furniture categories. For 3D-Front, we
follow [?] and use 22 object categories for bedrooms, and
15 object categories for living rooms. The category names

1

are listed below. All baselines are trained and tested with a
unified category split.

19 ScanNet categories
[’void’, ’bathtub’, ’bed’, ’bookshelf’,
’cabinet’, ’chair’, ’counter’, ’desk’,
’dresser’, ’lamp’, ’night stand’,
’refridgerator’, ’shelves’, ’sink’, ’sofa’,
’table’, ’television’, ’toilet’, ’whiteboard’]

22 3D-Front bedroom categories
[’void’, ’armchair’, ’bookshelf’, ’cabinet’,
’ceiling_lamp’, ’chair’, ’children_cabinet’,
’coffee_table’, ’desk’, ’double_bed’,
’dressing_chair’, ’dressing_table’, ’kids_bed’,
’nightstand’, ’pendant_lamp’, ’shelf’,
’single_bed’, ’sofa’, ’stool’, ’table’,
’tv_stand’, ’wardrobe’]

15 3D-Front living room categories
[’void’, ’armchair’, ’bookshelf’, ’cabinet’,
’ceiling_lamp’, ’chair’, ’coffee_table’, ’desk’,
’pendant_lamp’, ’shelf’, ’sofa’, ’stool’,
’table’, ’tv_stand’, ’wardrobe’]

In our layout decoder, all objects are constrained to be
located above the floor, which can be achieved by

c′y = cy + sy/2; cy > 0, sy > 0, (1)

where cy is the vertical coordinate of an object center. cy ≥
0 as it is outputted after a ReLU layer; sy is the height of an
object bounding box. In the following calculations, we use
c′y as the vertical coordinate of the object center.

A.3. Differentiable Rendering Setup

Given a scene with generated objects, we render it back
to input views with differentiable rendering. Thus in each
input view, there is a rendered instance map with object sil-
houettes. We use PyTorch3D [8] to implement our render-
ing process.

During mini-batch training, we randomly select 20 views
from all frames in each scene. We render the generated
scene back to the 20 views with a lower resolution to the
original input image (1/4 of the original1) due to the high
GPU memory consumption of differentiable rendering. We
render 50 faces per pixel in mesh rasterization [8]. Blur ra-
dius and blend sigma are 1e-4. A soft silhouette shader is
applied to render instance silhouettes. Thus, in each view
we obtain two maps: one differentiable silhouette map and
one instance ID map, from which we can obtain the instance
silhouette rpk of each object under 20 views.

B. Additional Loss Details
B.1. Hungarian Matching

For each object prediction ok in a scene (k=1,...,N),
we have its class label lk and a set of 2D bounding boxes

1Images in ScanNet and 3D-Front have resolution 1296×968 and
480×360 respectively.

Bk = {b1, ..., bT }k in all input views T , where T indicates
20 random views in a mini-batch. Additionally, we also
have ground-truth objects {ogt

j } in this scene (j=1,...,n).
For each ogt

j , it has a class label lgtj and a set of 2D bounding
boxes Bgt

j = {b1, ..., bTj}gtj in Tj views, where Tj denotes
all the observable views of ogt

j (Tj ⊆ T). N is the maximal
object number among all scenes. n is the object number of
this target scene in a mini-batch.

For each object prediction ok, we use the Hungarian al-
gorithm to find its optimal bipartite matching ogt

σ(k) for loss
calculation in Sec. 3.4, σ(k) = 1, ..., n or ∅. We use the
implementation of Hungarian algorithm from [3].

In our case, a prediction ok and a ground-truth object
ogt
σ(k) are characterized by (Bk, lk) and (Bgt

σ(k), l
gt
σ(k)), re-

spectively. As in [3], our matching cost takes into account
the similarity between both class labels <lk, l

gt
σ(k)>and 2D

bounding boxes <Bk,B
gt
σ(k)>. Thus the matching problem

can be formulated as

σ̂ = argmin
σ

n∑
k=1

[
Ll

match(lk, l
gt
σ(k)) + λBLB

match(Bk,B
gt
σ(k))

]
,

(2)
where Ll

match and LB
match are pair-wise matching costs. Note

that we find the bipartite matching for the first n predic-
tions only, i.e., {ok}, k=1, ..., n, n ≤ N , and predict their
completeness scores as ones. For the additional predictions
{ok}, k=n+1, ..., N , we predict their completeness scores
as zeros. The completeness score here indicates whether the
generated scene is complete or not. We set λB=5 to balance
the importance of the two costs.

We keep the definition of Ll
match as in [3], and formulate

our LB
match as

LB
match(Bk,B

gt
σ(k)) =

1

Tσ(k)

∑
p∈Tσ(k)

L1(b
p
k, b

p,gt
σ(k)), (3)

where Tσ(k) denotes all visible views of ogt
σ(k); b

p
k and bp,gtσ(k)

correspond to the 2D bounding box of ok and ogt
σ(k) in view

p, respectively. Each 2D bounding box is parameterized
with a vector of (x1, y1, x2, y2) ∈ [0, 1]4, which contains
the 2D coordinates of upper-left and bottom-right box cor-
ners relative to the image size.

By solving Eq. 2, we can assign a ground-truth object
ogt
σ(k) to each prediction ok, which facilitates our view loss

calculation in Sec.3.4.

B.2. Frustum Loss

As a component in layout loss LL (see Sec.3.4), the frus-
tum loss is designed to optimize the 3D center ck of a pre-
diction ok if it is not located inside a view frustum q ∈ Tσ(k)

from its matched ground-truth object ogt
σ(k). An illustration

of our frustum loss is shown in Fig. 2.

Figure 2. Illustration of frustum loss. p and q are two views where
the ground-truth object ogt

σ(k) is visible, while our prediction ok is
visible in view p only. We design a frustum loss, by maximizing
the cosine similarity between ray1 and ray2, to optimize ok’s loca-
tion and make it visible in view q as well.

As in our paper, we denote Tσ(k) as all the visible views
of the ground-truth object ogt

σ(k). We calculate the average

view loss between ok and ogt
σ(k) over all views in Tσ(k),

where the view loss includes object classification loss Ll,
2D bounding box loss Lbox, completeness loss Lp, frustum
loss Lf , and shape loss LS (see Sec.3.4). However, when
ok is out of some view frustum q ∈ Tσ(k), the calculation
of Lbox and LS are meaningless, making convergence dif-
ficult. In this case, we design a frustum loss to force ok to
move towards the view frustum of q.

Assume that ok is outside of T o
σ(k) views, where T o

σ(k) ⊆
Tσ(k). Then, we formulate the frustum loss Lf of ok as

Lf =
1

|T o
σ(k)|

∑
q∈T o

σ(k)

1−Cosine(ck−cqcam, cq,gtσ(k)−cqcam),

(4)
where |T o

σ(k)| is the number of views in T o
σ(k); ck is the

3D center of ok; cqcam is the 3D camera position at view q.
cq,gtσ(k) is the center of bq,gtσ(k) in 3D space, where bq,gtσ(k) is the

2D bounding box of ogt
σ(k) in view q. Therefore, ck − cqcam

denotes a ray in world system from the camera center cqcam
to the 3D object center ck, and cq,gtσ(k)−cqcam is the ray from
cqcam to the 2D ground-truth center on the image plane.

For an object ok invisible to views T o
σ(k), we minimize

the frustum loss while switching off the box loss Lbox and
shape loss LS under those views. For visible views, we
consider all view losses in Sec. 3.4 while switching off the
frustum loss Lf , because ok in visible views have valid 2D
bounding boxes and instance masks.

C. Additional Rendering Details for 3D-Front
We use BlenderProc [5] to sample cameras and render

2D images in 3D-Front scenes. Each scene in 3D-Front is
an apartment which has several room types (bedroom, living
room, library, etc.). In each scene, we uniformly sample

at most 100 view points, with each view rendered into a
360×480 image with field of view of 90 degrees. The view
number in each room is proportional to its floor area. The
average object number captured in each view is 3.89 and
5.79, for bedroom and living room respectively, while the
average object number contained in each room is 5.53 and
9.82 respectively. For each view, we export camera intrinsic
and extrinsic parameters, instance masks, IDs, and category
labels for our training.

D. Optimization Setup for Single View Recon-
struction

In single-view scene reconstruction, we have an image
with instance masks as the input. Our network and latent
vectors are trained under multiple views. In this task, we
freeze our pretrained network while only optimizing the la-
tent vector for each single image, where instance masks are
used for supervision. We use our view loss for this opti-
mization but do not consider completeness loss in our final
loss, because a single image is only a partial observation of
an entire scene and we do not know how many objects this
scene contains. We use RMSProp from PyTorch as the op-
timizer and train 1000 epochs with the initial learning rate
at 0.01, which drops by 0.1x after 500 epochs.

After training, we input the optimized latent vector to
our network and generate a set of objects. We output the
first n objects for our qualitative and quantitative evaluation,
where n is the object number in each input image.

E. Baselines

ATISS-2D We replace our transformer with the trans-
former encoder from ATISS [7] to generate object features,
while keeping other settings unchanged. Note that the trans-
former encoder in ATISS is also permutation-invariant. We
use the latent vector (sampled from the hypersphere surface)
as the empty embedding in ATISS transformer to autore-
gressively generate a set of object features, which are input
to our layout decoder and shape decoder for scene genera-
tion.

GAN We use our transformer as the generator to generate
scenes and use the discriminator from [9] to distinguish the
generated scene to real scenes. We apply a discriminator
loss here to replace our view loss. The generator predicts a
scene from a random vector sampled from our latent space.
Then we render the semantic maps of this scene back to
input views, and use the discriminator from [9] to classify if
they are real or fake. Note that we do not consider the depth
channel in the discriminator loss calculation, i.e., we only
use the 2D semantic maps.

Figure 3. Additional qualitative results on 3D scene synthesis.

LSTM We replace our transformer with a traditional
LSTM RNN [2] and keep other settings unchanged. It takes
a latent vector z as input and recursively generates a se-
quence of features.

F. Additional Details of Shape Retrieval

In Sec. 5, we apply a shape retrieval post-processing to
search for a CAD model for our reconstructed mesh. Since
we already predict an object mesh, shape retrieval from this
prediction is much easier. For each predicted object o, we
have its category label l, 3D bounding box b and mesh m.
For those objects whose center height ≤ 1 meter, we ex-
trude the bottom face of their 3D bounding box onto the
floor. We search through the CAD models under the same
category l, and transform (move and scale) them to the 3D
bounding box b. All CAD models are augmented by ro-
tating with 0, 90, 180, 270 degrees in the bounding box,
then we calculate the Chamfer distance between the sur-
face points from all augmented CAD models and the surface
points from our mesh m. The CAD model with the lowest
Chamfer distance is retrieved. We repeat this process for all
objects to model a 3D CAD scene.

Bedroom Living room
FID (↓) SCA KL (↓) FID (↓) SCA KL (↓)

25% 29.48 0.96 0.06 105.33 0.98 0.35
50% 24.91 0.91 0.04 44.85 0.98 0.04
Full 21.59 0.85 0.03 40.47 0.96 0.02

Table 1. Ablation analysis on the number of views for training,
evaluating scene generation.

G. Additional Ablation Experiments

In our training data, each scene contains at most 100
images to train our model (see Sec. C), where each scene
has multiple rooms (bedroom, living room, etc.). The view
number of each room is proportional to its floor area. More
views sampled in a room indicate better coverage to capture
more indoor objects.

In Tab. 1, we investigate the influence of different view
numbers on our scene generation performance. We observe
that better view coverage brings notable gains to all metrics,
which is particularly significant for large-scale rooms (e.g.,
living rooms). This indicates that, without enough view
coverage, our method cannot observe objects in different
views, which would lead to ambiguities in object localiza-
tion and deformation. However, more camera views means

Figure 4. Additional qualitative results on single-view scene reconstruction.

more training time, and extra human labor on data collec-
tion. In our experiments, we observe that using 100 views
for both 3D-Front and ScanNet scenes presents enough
scene coverage to learn general 3D scene priors.

H. Additional Qualitative Results
In Fig. 3 and Fig. 4, we list additional qualitative results

on 3D scene synthesis and single-view reconstruction from
the test set.

References
[1] Fast transformers. https://fast-transformers.

github.io/. Accessed: 2022-11-12. 1
[2] Sequence models and long short-term memory networks.

https://pytorch.org/tutorials/beginner/
nlp/sequence_models_tutorial.html. Accessed:
2022-11-14. 4

[3] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas
Usunier, Alexander Kirillov, and Sergey Zagoruyko. End-to-
end object detection with transformers. In European confer-
ence on computer vision, pages 213–229. Springer, 2020. 2

[4] Angela Dai, Angel X Chang, Manolis Savva, Maciej Halber,
Thomas Funkhouser, and Matthias Nießner. Scannet: Richly-
annotated 3d reconstructions of indoor scenes. In Proceedings
of the IEEE conference on computer vision and pattern recog-
nition, pages 5828–5839, 2017. 1

[5] Maximilian Denninger, Martin Sundermeyer, Dominik
Winkelbauer, Youssef Zidan, Dmitry Olefir, Mohamad El-
badrawy, Ahsan Lodhi, and Harinandan Katam. Blenderproc.
arXiv preprint arXiv:1911.01911, 2019. 3

[6] Huan Fu, Bowen Cai, Lin Gao, Ling-Xiao Zhang, Jiaming
Wang, Cao Li, Qixun Zeng, Chengyue Sun, Rongfei Jia, Bin-
qiang Zhao, et al. 3d-front: 3d furnished rooms with layouts
and semantics. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 10933–10942, 2021. 1

[7] Despoina Paschalidou, Amlan Kar, Maria Shugrina, Karsten
Kreis, Andreas Geiger, and Sanja Fidler. Atiss: Autore-
gressive transformers for indoor scene synthesis. Advances
in Neural Information Processing Systems, 34:12013–12026,
2021. 3

[8] Nikhila Ravi, Jeremy Reizenstein, David Novotny, Taylor
Gordon, Wan-Yen Lo, Justin Johnson, and Georgia Gkioxari.
Accelerating 3d deep learning with pytorch3d. arXiv preprint
arXiv:2007.08501, 2020. 2

[9] Ming-Jia Yang, Yu-Xiao Guo, Bin Zhou, and Xin Tong.
Indoor scene generation from a collection of semantic-
segmented depth images. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 15203–
15212, 2021. 3

https://fast-transformers.github.io/
https://fast-transformers.github.io/
https://pytorch.org/tutorials/beginner/nlp/sequence_models_tutorial.html
https://pytorch.org/tutorials/beginner/nlp/sequence_models_tutorial.html

	. Network Specifications
	. Permutation-invariant Transformer
	. Layout and Shape Decoder
	. Differentiable Rendering Setup

	. Additional Loss Details
	. Hungarian Matching
	. Frustum Loss

	. Additional Rendering Details for 3D-Front
	. Optimization Setup for Single View Reconstruction
	. Baselines
	. Additional Details of Shape Retrieval
	. Additional Ablation Experiments
	. Additional Qualitative Results

