
Supplement File for “Trap Attention: Monocular Depth Estimation with Manual
Traps”

Chao Ning
Northwestern Polytechnical University

Xi’an 710072, China
lagarto@mail.nwpu.edu.cn

Hongping Gan*

Northwestern Polytechnical University
Xi’an 710072, China

ganhongping@nwpu.edu.cn

1. Details of trap depth estimation network
Our depth estimation network consists of an encoder and

a decoder with a block selection (BS) unit in between. In or-
der to adapt to different application scenarios, we build our
trap depth estimation networks with 3 sizes (Trap-S, Trap-
M, Trap-L) by using different encoders (Trap-S uses an en-
coder of 12 blocks, and Trap-M/Trap-L uses an encoder of
24 blocks), and decoders of different sizes. The decoder
size depends on the projected dimension of C, and a ratio
of “hidden dimension

output dimension” in convolution based MLP. For the BS
unit, the input is a group of feature maps from consecutive
candidate encoder blocks, and the corresponding output is
the maximum pixels across each position among this group.
If the size of BS output is inconsistent with that of decoder,
a convolution layer or a transposed convolution layer, which
has the kernel size of 2 × 2 and the stride of 2, is used to
downsample or upsample the BS output, respectively.

The detailed settings of Trap-S, Trap-M, and Trap-L are
summarized in Table 1.

2. Additional visualization results
2.1. Additional visualization results on depth map

To make more detailed comparisons, we display the
depth estimation results on NYU [10], and SUN RGB-D
[11].

As depicted in Figure 2, our Trap-S and Trap-L mod-
els excel in predicting fine-grained depth information com-
pared to other existing methods. Note that the sharp details
can be only obtained by the network design. For example,
although the depth estimation scores of our Trap-S is lower
than those of NeW CRFs [13], it can be obviously observed
that the predictions of Trap-S still have sharper details.

We also visualize the cross-dataset test results on SUN
RGB-D dataset. According to Figure 3, the visualization
results show that our method achieve the best robustness.

*Corresponding author

3. Results on the online KITTI evaluation
benchmark

We train our proposed depth estimation model on the
official split proposed by Geiger et al. [4] (42949 train-
ing samples, 1000 validation samples, and 500 testing im-
ages) to evaluate our method on the online KITTI evaluation
benchmark.

Table 2 shows the performances of our proposed model
and other depth estimation networks on the online KITTI
evaluation server. According to Table 2, we can see that
our Trap-L outperforms other depth estimation methods
across all 4 metrics. For example, compared to previous
state-of-the-art method, NeW CRFs [13], Trap-L can re-
duce “SILog”, “sqErrorRel”, “absErrorRel” and “iRMSE”
by about 2.3%, 9.2%, 5.4% and 5.3%, respectively.

The visualization results of the predicted depth maps are
generated by the online server are shown in Figure 1. Com-
pared to the NeW CRFs method, our method can predict
sharper and smoother depth for various objects, e.g., the
trees, roofs and cars

4. Trap attention visualization
To verify and understand the effectiveness of the pro-

posed trap attention, we visualize the attention maps and
feature maps in Figure 4. The trap attention units focus on
various regions for low-resolution feature map, while the
trap attention units retain the plane information, such as tex-
ture, edges etc., for high-resolution feature map. For the last
mixed feature map of our model, the trap attention units can
capture distance information. As shown in the third last row
of Figure 4, the right half feature maps for each image retain
the features of distant objects.

5. Trap block vs. Transformer block
To further compare trap attention and MHA, we use a

single trap block and a single Transformer block to decode
the encoded features from XCiT-S [2], respectively. The

Table 1. The detailed setting of our Trap-S, Trap-M, and Trap-L models. The column of “α” is the ratio of “hidden dimension
output dimension

” in our
convolution based MLP. “Block section” indicates the candidate encoder blocks in 5 BS units, and “01-04” of first row denotes that the
first 1 to first 4 blocks are the candidate blocks in the BS unit of 1

22
input resolution stage. “R.” denotes the resolution of input image. C is

the projected channel dimension of decoder.

Model Encoder # Params C α Block section ([1
22 R., 1

42 R., 1
82 R., 1

162 R., 1
322 R.])

Trap-S XCiT-S12 [2] 28.3M 64 4 [01-04, 03-06, 05-08, 07-10, 09-12]
Trap-M XCiT-M24 [2] 94.2M 128 4 [01-08, 05-12, 09-16, 13-20, 17-24]
Trap-L Swin-L [8] 222.7M 192 4 [01-02, 03-04, 05-16, 11-22, 22-24]

(a) Input (b) NeW CRFs (c) Trap-L (ours)

Figure 1. Qualitative comparison with the state-of-the-art method on the online KITTI test dataset. Compared to NeW CRFs, our Trap-L
can predict the depths with sharper details for various targets.

dataset used is the NYU dataset. For a fair comparison,
we configure the two decoders with similar computational
complexities. The trap decoder has 48.8 GFLOPs, while
the Transformer decoder has 54.6 GFLOPs. Due to the
quadratic complexity, MHA can not perform on large res-
olutions as it requires excessive GPU memory for computa-
tions, even though the computational complexity is similar
to the trap block. Therefore, we use a lower resolution for
the Transformer decoder. The results are shown in Table 3
and Figure 5. The trap block outperforms the Transformer
block across seven metrics. Based on the visualization re-
sults, the trap block shows better performance in predicting
the depth of small objects.

6. Model definition in Pytorch
The pseudo-pytorch-code associated with our trap inter-

polation and trap block are provided in Algorithm 1 and
Algorithm 2, respectively.

References
[1] Shubhra Aich, Jean Marie Uwabeza Vianney,

Md Amirul Islam, and Mannat Kaur Bingbing Liu.
Bidirectional attention network for monocular depth
estimation. In 2021 IEEE International Conference
on Robotics and Automation (ICRA), pages 11746–
11752. IEEE, 2021.

[2] Alaaeldin Ali, Hugo Touvron, Mathilde Caron, Pi-
otr Bojanowski, Matthijs Douze, Armand Joulin, Ivan

(a) Input (b) BTS (c) Trap-S (ours) (d) NeW CRFs (e) Trap-L (ours)

Figure 2. Detailed comparison with the state-of-the-art methods on the NYU dataset. It can be clearly observed that the predictions of our
Trap-S and Trap-L have sharper details. Please zoom in for more details.

Laptev, Natalia Neverova, Gabriel Synnaeve, Jakob
Verbeek, et al. Xcit: Cross-covariance image trans-
formers. Advances in Neural Information Processing
Systems (NIPS), 34:20014–20027, 2021.

[3] Huan Fu, Mingming Gong, Chaohui Wang, Kayhan

Batmanghelich, and Dacheng Tao. Deep ordinal re-
gression network for monocular depth estimation. In
Proceedings of the IEEE Conference on Computer Vi-
sion and Pattern Recognition (CVPR), pages 2002–
2011, 2018.

(a) Input (b) BTS (c) AdaBin (d) Trap-S (ours) (e) Trap-L (ours) (f) GT

Figure 3. Comparison with the state-of-the-art methods on the SUN RGB-D dataset. Compared with BTS and AdaBin, our proposed
Trap-S and Trap-L have more accurate prediction.

[4] Andreas Geiger, Philip Lenz, Christoph Stiller, and
Raquel Urtasun. Vision meets robotics: The kitti
dataset. The International Journal of Robotics Re-
search (IJRR), 32(11):1231–1237, 2013.

[5] Vitor Guizilini, Rares Ambrus, Wolfram Burgard, and
Adrien Gaidon. Sparse auxiliary networks for uni-
fied monocular depth prediction and completion. In
Proceedings of the IEEE Conference on Computer Vi-

Figure 4. The attention maps and the counterpart convolution outputs of trap attention units. From top to bottom are the coarse depths to
fine depths.

(a) Input (b) Transformer (c) Trap (ours) (d) GT

Figure 5. Qualitative comparison between Transformer block and Trap block on NYU dataset.

Algorithm 1: Pseudocode of Trap Interpolation in PyTorch-like style

def trapped_inter(x):
B, C, H, W = x.shape
mask1 = torch.round(torch.abs(torch.sin(x)))
mask2 = torch.round(torch.abs(torch.cos(x)))
mask3 = torch.round(torch.abs(2*torch.sin(x)*torch.cos(x)))
mask4 = torch.round(torch.sin(x) ** 2)

x1 = mask1 * x
x2 = mask2 * x
x3 = mask3 * x
x4 = mask4 * x
x = torch.cat([x1, x3, x2, x4], dim=1)

x = x.view(B, 2, 2*C, H, W)
x = x.permute(0, 2, 3, 1, 4).flatten(2).contiguous()
x = x.view(B, 2*C, H * 2, W)
x = x.view(B, 2, C, H * 2, W)
x = x.permute(0, 2, 3, 4, 1).flatten(-1).contiguous()
x = x.view(B, C, H * 2, W * 2)

return x

Table 2. Comparison of performances on the online KITTI evalu-
ation server.

Method lower is better
SILog sqErrorRel absErrorRel iRMSE

Yin et al. [12] 12.65 2.46 10.15 13.02
P3Depth [9] 12.82 2.53 9.92 13.71
DRON [3] 11.77 2.23 8.78 12.98
BTS [6] 11.67 2.21 9.04 12.23
BA-Full [1] 11.61 2.29 9.38 12.23
PackNet-SAN [5] 11.54 2.35 9.12 12.38
PWA [7] 11.45 2.30 9.05 12.32
NeWCRFs [13] 10.39 1.83 8.37 11.03

Trap-L (ours) 10.15 1.66 7.92 10.45

sion and Pattern Recognition (CVPR), pages 11078–
11088, 2021.

[6] Jin Han Lee, Myung-Kyu Han, Dong Wook Ko, and
Il Hong Suh. From big to small: Multi-scale local pla-
nar guidance for monocular depth estimation. arXiv
preprint arXiv:1907.10326, 2019.

[7] Sihaeng Lee, Janghyeon Lee, Byungju Kim, Eojindl
Yi, and Junmo Kim. Patch-wise attention network
for monocular depth estimation. In Proceedings of
the AAAI Conference on Artificial Intelligence, pages
1873–1881, 2021.

[8] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei,
Zheng Zhang, Stephen Lin, and Baining Guo. Swin

transformer: Hierarchical vision transformer using
shifted windows. In Proceedings of the IEEE/CVF In-
ternational Conference on Computer Vision (ICCV),
pages 10012–10022, 2021.

[9] Vaishakh Patil, Christos Sakaridis, Alex Liniger, and
Luc Van Gool. P3depth: Monocular depth estimation
with a piecewise planarity prior. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), 2022.

[10] Nathan Silberman, Derek Hoiem, Pushmeet Kohli,
and Rob Fergus. Indoor segmentation and support in-
ference from rgbd images. In Proceedings of the Euro-
pean Conference on Computer Vision (ECCV), pages
746–760. Springer, 2012.

[11] Shuran Song, Samuel P Lichtenberg, and Jianxiong
Xiao. Sun rgb-d: A rgb-d scene understanding bench-
mark suite. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR),
pages 567–576, 2015.

[12] Wei Yin, Yifan Liu, Chunhua Shen, and Youliang Yan.
Enforcing geometric constraints of virtual normal for
depth prediction. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition
(CVPR), pages 5684–5693, 2019.

[13] Weihao Yuan, Xiaodong Gu, Zuozhuo Dai, Siyu
Zhu, and Ping Tan. Newcrfs: Neural window fully-
connected crfs for monocular depth estimation. In
Proceedings of the IEEE Conference on Computer Vi-
sion and Pattern Recognition (CVPR), 2022.

Algorithm 2: Pseudocode of Trap Block in PyTorch-like style

class TrapBlock(nn.Module):
def __init__(

self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU,
norm_layer=LayerNorm2d, drop=0.1, ls_init_value=1., trap=True, drop_path=0.

):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features

7x7 Conv
self.dw_conv = nn.Conv2d(in_features, in_features,

kernel_size=7, padding=3, groups=in_features)

self.trap = trap
if self.trap:

self.downsample = nn.PixelUnshuffle(2)
self.attn_conv = nn.Conv2d(in_features*4, in_features, kernel_size=3,

padding=1, groups=in_features)
self.norm1 = norm_layer(in_features*4) if norm_layer else nn.Identity()
self.gamma1 = nn.Parameter(ls_init_value * torch.ones(in_features))

if ls_init_value > 0 else None

ConvMLP
self.fc1 = nn.Conv2d(in_features, hidden_features, kernel_size=1, bias=True)
self.act = act_layer()
self.fc2 = nn.Conv2d(hidden_features, out_features, kernel_size=1, bias=True)

LayerNorm
self.norm1 = norm_layer(in_features) if norm_layer else nn.Identity()
self.norm2 = norm_layer(in_features) if norm_layer else nn.Identity()

self.gamma2 = nn.Parameter(ls_init_value * torch.ones(out_features))
if ls_init_value > 0 else None

self.shortcut = out_features == in_features
self.drop = nn.Identity()
self.drop_path = DropPath(drop_path)

def forward(self, x):
x = self.drop_path(self.dw_conv(x)) + x
if self.trap:

shortcut1 = x
x = trapped_inter(self.downsample(x))
x = self.norm1(x)
x = self.attn_conv(x)
x = x.mul(self.gamma1.reshape(1, -1, 1, 1))
x = self.drop_path(x) + shortcut1

if self.shortcut:
shortcut2 = x

x = self.norm2(x)
x = self.fc1(x)
x = self.act(x)
x = self.fc2(x)
if self.gamma2 is not None:

x = x.mul(self.gamma2.reshape(1, -1, 1, 1))

if self.shortcut:
x = self.drop_path(x) + shortcut2

return x

Table 3. Comparison of performances on the NYU dataset.

Method
higher is better lower is better

δ < 1.25 δ < 1.252 δ < 1.253 Abs Rel Sq Rel RMSE RMSE log log10

Transformer 0.886 0.980 0.995 0.111 0.065 0.382 0.140 0.047
Trap 0.894 0.982 0.995 0.106 0.059 0.379 0.136 0.046

	. Details of trap depth estimation network
	. Additional visualization results
	. Additional visualization results on depth map

	. Results on the online KITTI evaluation benchmark
	. Trap attention visualization
	. Trap block vs. Transformer block
	. Model definition in Pytorch

