
Domain Expansion of Image Generators - Supplementary Materials
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A. Overview
In Appendix B, we consider a baseline for domain ex-

pansion and demonstrate it is inferior to our proposed
method. Next follows the main part of the supplementary,
Appendix C, in which we perform additional analysis and
experimentation of our method. Finally, in Appendix D, we
provide additional details completing the paper.

B. Domain Expansion Baseline Using Class-
Conditioning

In this section, we experiment with an alternative, base-
line, method to perform domain expansion. Generative
models capturing multiple domains commonly use a class-
conditioning mechanism [3]. Adopting this approach, we
attempt to perform domain expansion by modeling domains
with classes. We find that this method does not work as well
as our proposed method.

Method. We start with an unconditional pretrained gen-
erator, specifically StyleGAN [13]. We then make the gen-
erator condition on a one-hot vector, using the architecture
proposed by Karras et al. [11]. This change involves adding
a single MLP layer, whose input is the one-hot vector. Its
output is concatenated to the random latent code and then
fed to the generator.

The class-conditioned generator is trained in a similar
protocol to our method. The source domain uses class c =
0, which is analogous to the base subspace. Whenever the
0th class is sampled, we apply the original loss Lsrc and the
memory replay regularization (See Sec. 3.3). Formally, the
loss describing this training is

Lreg = Ez∼psrc(z)

[
λsrcLsrc(G(z, c = 0))+

Lrecon(G(z, c = 0))
]
,

(1)

where Lrecon is the memory-replay loss defined in Eq. (5)
and λsrc = 1 is a hyperparameter weighting the losses.
Other classes, analogous to repurposed subspaces, are ded-
icated to the newly introduced domains. Whenever the ith

class is sampled (i > 0), we apply the loss of the domain

adaptation task Li. Applied over all new domains, the ex-
pansion loss is formally given by

Lexpand =

N∑
i=1

Ez∼pi(z) Li(G(z, c = i)). (2)

The final training objective still reads as Lfull = Lexpand +
Lreg.

Experiments. We expand an FFHQ [12] generator with
two new domains, “Sketch” and “Tolkien Elf”, introduced
using StyleGAN-NADA [5]. We display the generated im-
ages using the same z latent codes for the different classes
Fig. 1a.

We qualitatively observe that the expanded, class-
conditioned generator preserves the source domain well,
also expressed by preserving the FID [7] score. However,
for new domains, we observe degraded performance from
two aspects. First, the class-conditioned generator “leaks”
knowledge between the classes. For example, in Fig. 1a,
faces generated from the class dedicated to sketches also
have long, elf-like, ears. Second, the domains are not
“aligned”. Despite being generated from the same z latent
codes, the images differ beyond the differences between do-
mains. For example, corresponding images from the source
domain and elf domain often portray different head poses
and facial expression. Therefore, it is not clear how can one
obtain the elf “version” of a given face image, limiting the
applications of such a model.

For reference, we display comparable results from our
expansion method in Fig. 1b. As can be seen, our method
does not suffer from these issues.

C. Additional Experiments
C.1. Latent Directions Analysis

Our method explicitly relies on the existence of dormant
directions and their distinction from non-dormant direc-
tions. We wish to emphasize that the dichotomous distinc-
tion between “dormant” and “non-dormant” is a simplifica-
tion. In Fig. 2, we report the mean LPIPS distance induced
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(b) Our domain expansion method

Figure 1. Experimenting with a class-conditioned baseline for domain expansion. (a) Images generated from a class-conditioned expanded
model from the same z latent codes for the source, sketch, and elf domains. The source domain is preserved well in its dedicated class.
However, the newly introduced domains “leak” information, expressed in long, elf-like, ears in the sketch domain. Additionally, the
different domains are not well-aligned, as changing the domain also results in unrelated changes to head pose and facial expressions. (b)
Comparable results from our domain expansion method, provided for reference. As can be seen, using our method, the domains do not
interfere with each other and are well-aligned.

to images by a 3σ traversal along each direction. As can
be seen, the distance is never exactly 0 and there is also no
clear discontinuity. Nevertheless, it is clear that later direc-
tions, usually those beyond 100, cause significantly smaller
perceptual change in the generated image. This behavior
can also be qualitatively observed in Fig. 3.

As discussed in Sec. 4.1, this “almost” monotonous be-
havior is expected as our latent directions are right-singular
vectors, sorted in decreasing order according to their corre-
sponding singular values [36].

C.2. Effect of Choice of Direction for Domain

Our method dedicates a single dormant direction for ev-
ery newly introduced domain. As mentioned in Sec. 4.1,
all previous experiments used the last dormant directions,
sorted in decreasing order according to their corresponding
singular values. One might wonder: Why should one use the
last directions? And among the last directions, how should
one match a direction to a domain?

We now demonstrate that the specific choice of a latent
direction has no significant impact on results, as long as it is
dormant. To this end, we perform multiple expansions, each
with 5 new domains introduced by StyleGAN-NADA [5],
starting from a single generator pretrained on AFHQ [4].
For 4 of the new domains – “Siberian Husky”, “Pixar”,
“Funny Dog”, “Boar” – we dedicate the same directions in
all experiments. Specifically, we use directions 507 − 510,
respectively. Directions numbers refer to their location in
the decreasingly sorted right-singular vector set. Recall that
the dimension of the latent space is 512, hence these direc-
tions are among the last ones. For the last domain, “Sketch”,
we vary the dedicated direction, using one of the directions
200, 300, 400, 500, 511. We run the expansion twice with

different random seeds.
We study how the choice of direction for the Sketch do-

main affects its performance. In Fig. 4 (top) we report the
CLIP error of images generated from the “Sketch” subspace
with the prompt “a sketch” as a function of training itera-
tions. We additionally display sample of generated images
from each model in Fig. 4 (bottom). As can be seen, similar
results are produced from different repurposed directions.
Specifically, visual differences observed using different di-
rections, are similar to those observed using the same direc-
tions but with different random seeds. This indicates that
the differences between directions are negligible and might
be entirely due to random chance.

Nevertheless, we do observe that certain directions min-
imize the CLIP error slightly more efficiently, across ran-
dom seeds. We therefore run additional 5 expansions, using
“Bear” instead of “Sketch”. We now observe a different or-
dering of directions. We therefore conclude, that even if
slight, imperceptible, differences exist between directions,
they are not consistent across domains.

In summary, the choice of dormant direction has little to
no effect. This result is arguably intuitive, as all dormant
directions might be considered equivalent, having insignif-
icant effect on generated images. Therefore, our choice of
using the last directions is almost arbitrary, only motivated
by the fact that they are the “most dormant”. Similarly, no
technique is required to match an direction to a domain, and
one can simply pick a dormant direction randomly.

C.3. Repurposing Non-Dormant Directions

Aiming at domain expansion, preserving the source do-
main is integral. Since the non-dormant directions span the
variations of the source domains, we explicitly kept them
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Figure 2. Magnitude of perceptual effect caused by traversing dif-
ferent directions. Directions are sorted in decreasing order accord-
ing to their corresponding singular values. For each direction, we
measure the LPIPS distance [49] between images from two latent
codes distanced by a 3σ traversal along the direction. As can be
seen, the effect caused by the traversal diminishes quickly and the
majority of directions are dormant.

intact, and repurposed only dormant directions. Neverthe-
less, the training method itself could be identically applied
to non-dormant directions. One simply needs to dedicate
a non-dormant direction to capture the new domain. We
next demonstrate that applying our method to non-dormant
directions is still effective and enables capabilities beyond
domain expansion.

Traversing the 1st latent direction in the generator pre-
trained on FFHQ [12], makes people in generated images
appear older and more masculine. Some users might decide
that they associate having a full beard with being older and
more masculine. To support such behavior, we fine-tune the
generator with a transformed StyleGAN-NADA [5], to cap-
ture “a person with a beard” along the 1st direction. We
display images generated along traversals of the 1st direc-
tion, before and after tuning, in Fig. 6a. As can be seen, the
generator now represents having a beard, along its 1st latent
direction, in addition to its previous behavior.

The capability to add new concepts in addition to exist-

ing ones does not depend on the close relationship between
the two in the last examples. To demonstrate this point, we
tune the generator to capture “Elf” along its 8th direction,
which originally encodes head pose (and a few other prop-
erties). Results are displayed in Fig. 6b.

Previous results are clearly not solving domain expan-
sion, as they alter the original behavior of the source do-
main. Instead, one might say they adapt the domain mod-
eled by the generator. Nevertheless, there exists a profound
difference to existing domain adaptation methods. Our re-
sulting generator does not completely overriding the source
domain. Instead, in a precise and controllable manner, it
modifies individual factors of variation. Therefore, a user
can carefully rewrite [1, 43] the semantic rules of a genera-
tive model, allowing greater control and freedom.

C.4. Distance to Repurposed Subspace

Repurposed subspaces are defined by transporting the
base subspace along a linear direction by a predetermined
scalar size s (See Eq. (3) in the main paper). All results
in the paper, across domains and variations used s = 20.
We next evaluate the effect the hyperparameter s has on re-
sults. To this end, we perform multiple expansions of an
FFHQ [12] generator with 100 new variations, while vary-
ing the value of s.

We measure CLIP errors (introduced in Sec. 4.3) of im-
ages generated from repurposed subspaces and the corre-
sponding target text used for training, as a function of train-
ing iterations. In Fig. 7a we report the results for two varia-
tions - “Marge Simpson” and “Tolkein Elf”. As can be seen,
for all s > 0, CLIP error decreases as training progresses,
and it decreases “faster” for greater values of the parameter
s. Even with ×10 more iterations, the model trained with
s = 5 does not reach the CLIP error of the model trained
with s = 20.

Images generated from the repurposed subspaces are dis-
played in Fig. 7b. For each value of s, we use the checkpoint
that resulted in the closest CLIP error to that obtained by a
favored s = 20 checkpoint. As can be seen, not only train-
ing time is affected by parameter s, but the visual effects
captured by training vary significantly.

We observe that models trained with greater values of
parameter s depict a more significant change with respect
to the source domain. When parameter s is too small (e.g.,
s ≤ 5), the model captures only few, simple characteristics
of the new domain. On the other hand, when parameter s
is too large (e.g., s = 50), the model commonly generates
images that are blurry, have color artifacts or even do not
capture the target text well. For example, with the target text
“Marge Simpson”, the model learns to generate images with
blue skin rather than blue hair. We note that these undesired
artifacts cannot be mitigated by training with a large value
of parameter s originally, and use a smaller one in test-time,



(a) FFHQ (b) LSUN Church

Figure 3. Visualization of ±3σ traversal along latent directions in the FFHQ [12] and LSUN Church [48] models, obtained using SeFA [36].
Directions shown are sorted from least (v0, top) to most (v511, bottom) dormant. As can be seen, later directions are dormant – not affecting
the generated image. We over-sample early directions for clarity. In practice, over 80% of directions are dormant.
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Figure 4. We expand a generator pretrained on AFHQ [4] with 5 domains, varying the dormant direction dedicated to the “sketch” domain.
We repeat the expansion twice, with different random seeds. Top - reporting CLIP error of images generated from the sketch domain with
the text “a sketch”. Bottom - a sample of generated images from checkpoints obtaining CLIP error closest to the horizontal black line. As
can be seen, images generated using different repurposed dimensions differ only slightly. Specifically, changing the random seed induces
similar difference.
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Figure 5. Similar to Fig. 4, using a “bear” domain instead of
“sketch”. As can be seen, dimensions are ordered differently in
terms of minimizing CLIP error, as compared to their order for
sketch.

as demonstrated in Fig. 8.
Following these results, we conclude that the parameter

s has a regularizing effect. Placing the domains “closer”
in the latent space causes them to be more similar in im-
age space as well. Conversely, placing the domains further
apart allows the new domain to capture more drastic, out-

of-domain effects.

Eventually, choosing a value for parameter s is subject
to user preference. In our experiments, we have found that
values in the range of [10, 30] offer satisfying results, across
different source and expanded domains.

We last note that the regularization effect of parameter s
could be explained by the existence of a globally consistent
“pace of change” of the generator with respect to the latent
space. With StyleGAN, such behavior is explicitly encour-
aged using a Perceptual Path Length (PPL) regularization
term [13]. Nevertheless, we observe identical results when
omitting this regularization during our expansion.

C.5. How Many Domains Can Fit?

So far, the largest number of new domains used for ex-
pansion was 105. The results from Appendix C.1 indicated
that there might be up to 400 dormant directions. Could
they all be repurposed?

We apply our method to expand a generator pretrained
on FFHQ with 400 new domains, repurposing the last (and
perhaps all) dormant directions. Incredibly, the expansion
succeeds. We find that the expansion follows the same find-
ings discussed in Sec. 4.3 – training is slower, yet quality is
uncompromised. Specifically, the FID score from the base
subspace is 2.83 compared to 2.80 in our model expanded
with 105 domains. We display images generated from this
model in the accompanying video and in Figs. 9 to 11.
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Figure 6. Using our training method with non-dormant direction
rewrites existing semantic rules and adds new concepts on top of
existing ones. (a) Traversing the 1st direction originally made peo-
ple older and more masculine. After fine-tuning, it also adds a
beard. (b) Traversing the 8th direction originally turned people
heads. After fine-tuning it also turns them to elves.

C.6. Additional Compositions Results

In Figs. 12 and 13 we provide additional qualitative re-
sults displaying compositionality in expanded generators.

D. Additional Details

D.1. Training Time and Iterations

When expanding the generator with a single new do-
main, our training requires roughly twice the number of it-
erations to obtain comparable effects. The difference is a
direct result of our additional regularization terms. With ad-
ditional domains, we observe a roughly linear relationship
between the number of domains and the required training it-
erations. For example, the FFHQ model expanded with 105
iterations was trained for 40K iterations, while the model
with 400 iterations was trained for 150K iterations.

Note that different training objective might require a dif-
ferent number of iterations. StyleGAN-NADA [5] specifi-
cally heavily relies on early-stopping. An ideal domain ex-
pansion method could consider this issue, and sample train-
ing objectives to apply non-uniformly. In practice, we did
not observe this to be an issue, probably due to our method
optimizing numerous objectives simultaneously.

D.2. Transformation of Loss Function

As explained in Sec. 3.2, transforming a given domain
adaptation task to perform domain expansion requires lim-
iting the samples latent codes. The loss function itself,
in principal, is left unchanged. This is exactly the case
for MyStyle [21]. For StyleGAN-NADA [5], however, we
made a subtle modification to the loss function.

StyleGAN-NADA computes its loss with respect to a
frozen copy of the source generator (See Sec. 4.1). This is
done in order to maintain access to the source domain, de-
spite it vanishing from the adapted generator during train-
ing. Conversely, using our method, the source domain is
preserved along the base subspace. We take advantage of
this fact and modify the loss only slightly. Instead of us-
ing a frozen generator to generate images from the source
domain, we simply use our expanded generator and latent
codes from the base subspace.
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Figure 7. Evaluating the effect of the distance between the base and repurposed subspace, s. (a) We compare CLIP error as a function of
training iterations, between models trained with different values of parameter s. (b) Generated images from models having CLIP error as
close as possible to the black horizontal line. As can be seen, increasing s corresponds to faster minimization of CLIP error. However,
even with comparable CLIP errors, visual effect might vary significantly. Large values of parameter s are often associated with undesired
artifacts. We find that values between [10, 30] are usually preferable.
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Figure 8. Interpolation between the base subspace and the repur-
posed subspace where s = 50. As can be seen, undesired behavior
occurring at repurposed subspace (e.g. blue skin Marge Simpson)
cannot be mitigated by traversing shorter distances in test time.
The choice of parameter s is crucial in training time.
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