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A. Implementation Details
A.1. General

We use images of size 256× 256 (using border padding
for non-square image), which is the resolution the STN
takes as input. The rigid STN resizes the images to the reso-
lution of the atlas, which is set to be WA = HA = 128. For
feature extraction, we use ViT-S/8 (D = 384) with stride
4, as in [1]. We extract the keys from the original images
and bilinearly upsample them to the atlas resolution.

A.2. Spatial Transformer Architecture Details
We use the same architectures for the STNs as in [5].

Both architectures are based on the design of the ResNet-
based discriminator from StyleGAN2 [2]. Tables 3 and 4
detail the layers of the rigid and non-rigid STN respectively,
and 5 and 6 detail the building blocks.

Rigid STN. The rigid mapping network consists of a
ResNet backbone with a fully-connected layer at the end,
which outputs four logits (o1, o2, o3, o4), to which the fol-
lowing activations are applied to obtain the transformation
parametrization:

θ = π · tanh(o1) , R =

[
cos θ − sin θ
sin θ cos θ

]
(1)

s = exp(o2) (2)

t =

[
o3
o4

]
(3)

Non-Rigid STN. The non rigid mapping network consists
of a ResNet backbone that outputs a 16 × 16 feature grid
which is then fed to two small convolutional networks: the
first outputs a 16 × 16 coarse flow field, and the second
outputs weights which are used to perform ×8 upsampling
of the coarse flow field to the size of 128×128 = HA×WA.
The final flow is bilinearly upsampled in case of applying
backward warp on inputs of resolution higher than 128.

When composing both networks, the affine matrix given
by the rigid STN is applied to the non-rigid flow which re-
sults in the final sampling grid used to congeal the original
input image, DINO-ViT features and saliency mask.

A.3. Loss Terms
All losses except for Lsparsity and Lscale are applied

in the atlas space within the boundaries of the backward
warped images. Formally, for Lkeys, Lsaliency, Lmag ,
Lsmooth and Lcenter the sum in the atlas space is taken over
the indices {xA | M(Ii,xA) ∈ Ii}.

We detach the atlas saliency SA for losses which should
not have an impact on the joint saliency, which are Lkeys

and local Lsmooth (see details next).

Rigidity Loss Lsmooth. Recall the term Lsmooth, defined
as in [3], is formally defined by:

Lsmooth =
1

N ·NA

N∑
i=1

∑
xA

(∥∥JTJ
∥∥
F
+
∥∥∥(JTJ

)−1
∥∥∥
F

)
(4)

where N is the number of images, NA is the number of pix-
els in the atlas, and J is the Jacobian matrix of M at xA.
The term is used to prevent the non-rigid mapping from dis-
torting the shared content by encouraging as rigid as possi-
ble mapping. The Jacobian matrix is defined by:

J =
1

∆

[
j1 j2

]
∈ R2×2 (5)

where

j1 = M
(
Ii,xA +∆ ·

[
1
0

])
−M(Ii,xA), (6)

j2 = M
(
Ii,xA +∆ ·

[
0
1

])
−M(Ii,xA) (7)

and ∆ corresponds to the offset in pixels. This encourages
both singular values of J to be 1, which is what is required
for a rigid mapping. We apply both local and global con-
straints, with ∆ = 1 and ∆ = 20 respectively.

In practice, similarly to the other losses, we apply the
local rigidity loss only within the salient parts of the atlas
(similarly to Eq. (5) in the main paper).

A.4. Training
We train the atlas and the STNs jointly. We first boot-

strap the rigid STN for 1000 epochs, and then train both the



rigid and non-rigid components on their own (separate ob-
jective function), when only the non-rigid network affects
the atlas training. We train for a total of 8000 epochs, and
use Adam optimizer [4] with a learning rate of 1 · 10−4 for
the STNs and 8 · 10−4 for the atlas. Training on a set of
10 images on a Tesla V100-SXM2-32GB takes 1.2 hrs and
uses 3.4GB of GPU memory, or 1.8 hrs and 5.3GB of GPU
memory in case of including horizontal flips.

Loss coefficients. The loss coefficients we used for all ex-
periments are as follows:

L = Lkeys + λsLsaliency + λrLregM + λaLregA (8)

with λs = 1.25, λr = 0.025, λa = 0.75.

Lkeys = λlL2 +Dcos (9)

with λl = 0.875.

LregM = λs1Lscale + λs2Lmag + Lsmooth (10)

with λs1 = 8, λs2 = 80. As mentioned in Appendix A.3,
we apply Lsmooth both locally and globally, namely:

Lsmooth = L∆=1
smooth + λs3L∆=20

smooth (11)

with λs3 = 3.5.

LregA = Lcenter + λpLsparsity (12)

with λp = 0.075. As mentioned in Sec. 3.2 in the main
paper, we apply λpLsparsity both to the atlas saliency and
the atlas keys, namely:

Lsparsity = LSA
sparsity + λkLKA

sparsity (13)

with λk = 0.044. For LSA
sparsity we set the relative weight

between the L1- and L0-approximation terms to be γ = 2.
The entire objective function is multiplied by a scalar

c · L, where c = 4000.

A.4.1 Congealing under extreme deformations.

Similarly to [5], we include an option of allowing horizon-
tal flips in a given set, which is also used for the training
of subsets of SPair 71K and CUB-200-2011 (Sec. 4.2 in the
main paper). The flipping is done during training: we train
the STNs with both the original images and the flipped im-
ages, and update the atlas only according to the orientation
that currently has a lower semantic loss (keys loss).

Due to the extreme deformations present in the subsets
of SPair 71K and CUB-200-2011, to increase robustness,
we further reduce the local and global rigidity coefficients
to be ×0.25 its original value and the global rigidity to be
λs3 = 0.9. In addition, the atlas representation is gradu-
ally updated during training, i.e., the images used to update

block layer output size

0 bilinear downsample (using conv2d) 3 × 128 × 128
1 convL(64, 1, 1, 0, fusedLeakyReLU) 64 × 128 × 128
2 ResBlock((64, 3, 1, 1), (128, 3, 2, 0), (128, 1, 2, 0)) 128 × 64 × 64
3 ResBlock((128, 3, 1, 1), (512, 3, 2, 0), (512, 1, 2, 0)) 512 × 32 × 32
4 ResBlock((512, 3, 1, 1), (512, 3, 2, 0), (512, 1, 2, 0)) 512 × 16 × 16
5 ResBlock((512, 3, 1, 1), (512, 3, 2, 0), (512, 1, 2, 0)) 512 × 8 × 8
6 ResBlock((512, 3, 1, 1), (512, 3, 2, 0), (512, 1, 2, 0)) 512 × 4 × 4
7 convL(512, 1, 2, 0, fusedLeakyReLU) 512 × 4 × 4 (flattened)
8 linear + fusedLeakyReLU 1 × 512
9 linear 1 × 4

Table 3. Architecture of rigid STN.

block layer output size

0 convL(64, 1, 1, 0, fusedLeakyReLU) 64 × 128 × 128
1 ResBlock((64, 3, 1, 1), (128, 3, 2, 0), (128, 1, 2, 0)) 128 × 64 × 64
2 ResBlock((128, 3, 1, 1), (512, 3, 2, 0), (512, 1, 2, 0)) 512 × 32 × 32
3 ResBlock((512, 3, 1, 1), (512, 3, 2, 0), (512, 1, 2, 0)) 512 × 16 × 16
4 ResBlock((512, 3, 1, 1), (512, 3, 1, 1), (512, 1, 1, 0)) 512 × 16 × 16
5 convL(512, 3, 1, 1, fusedLeakyReLU) 512 × 16 × 16

6 conv2d(512, 3, 1, 1) + ReLU + conv2d(2, 3, 1, 1) 2 × 16 × 16
(coarse flow)

7 conv2d(512, 3, 1, 1) + ReLU + conv2d(576, 3, 1, 1) 576 × 16 × 16
(upsampling weights)

Table 4. Architecture of non-rigid STN.

ResBlock((channels1, kernel1, stride1, padding1),
(channels2, kernel2, stride2, padding2),
(channels3, kernel3, stride3, padding3))

order type layer

0 conv1 convL(channels1, kernel1, stride1, padding1, fusedLeakyReLU)
1 conv2 convL(channels2, kernel2, stride2, padding2, blur, fusedLeakyReLU)
2 skip convL(channels3, kernel3, stride3, padding3, blur)

Table 5. Architecture of a ResBlock.

convL(channels, kernel, stride, padding, blur, fusedLeakyReLU)

order layer

0 blur (upfirdn2d)
1 conv2d(channels, kernel, stride, padding)
2 fusedLeakyReLU

Table 6. Architecture of a convL layer.

the atlas are added one-by-one where every 100 epochs the
image with the lowest key loss is added. We observed that
this training scheme is more stable and allows faster conver-
gence for these sets. For the Bicycle set of SPair-71K, since
many images contain only one wheel, we fix the atlas with
the image that is most semantically similar to the average
keys of the set and train the set with a fixed atlas.

B. Point Correspondence Between A Pair of
Images

As in [5], our method can find dense correspondences
between a pair of images. For each image pair {IA, IB},
we transfer the ground truth keypoints kA ∈ IA to IB . This
is done by mapping kA to the atlas, obtaining kA then map-
ping it to IB . Recall that our mapping M = Mr ◦Mf is
defined from the atlas to each image. For mapping kA to the



Model type Emb. size SPair-71K CUB

Cat Dog Bicycle

CLIP ViT-B/16 (t) 768 51.2 - 22.8 36.8
DINO ViT-B/8 (k) 768 59.8 32.4 27.4 55.3
*DINO ViT-S/8 (k) 384 53.3 35.2 29.1 63.2

Table 7. PCK-Transfer, comparing different encoder models. (t) -
tokens; (k) - keys. *model used in our framework.

In
pu

t
D

IN
O

C
L

IP

Figure 9. Sample results of our method using CLIP image encoder
vs DINO ViT-S/8 encoder.

atlas, we first compute the inverse of the rigid transforma-
tion, which has a closed-form solution (inverse of an affine
matrix). Then, since there is no closed form for obtaining
the inverse of Mf , we follow [5], and approximate the in-
verse using nearest neighbors. Finally, we map kA to IB by
bilinearly sampling the mapping grid of IB .

C. Ablation Study: No Atlas Regularization
As discussed in the main paper (Sec. 4.3), the sparsity

regularization on the atlas assists our framework in captur-
ing the dominant shared content, while ignoring noise and
background clutter.

Sample cases can be seen in Fig. 11: for Guitars, some
background content is captured by the atlas w/o this regu-
larization. In Art Cats, the sparsity regularization allows us
to only focus on the face, while ignoring unshared regions
even if they are initially considered to be salient (cat’s body,
third column from the right).

D. Alternative Encoder Models
Our choice of ViT-S/8 was motivated by [1], which

demonstrated the power of these features for several dense
inference tasks. Table 7 reports the performance of addi-
tional two models: DINO ViT-B/8 and CLIP [6] image
encoder of ViT-B/16 backbone – both models have em-
bedding size of 768, compared to 384 used in our frame-
work. For obtaining the same features’ spatial resolution as
in our setting, we set the patch embeddings’ stride to 4, as
suggested in [1].

As can be seen, CLIP’s features are less effective than
both DINO models for this task of dense alignment. We
speculate that this may be due to the discriminate training
objective of CLIP, which may lead to noisier internal fea-
tures [1]. The two DINO models perform on par, where
ViT-S/8 is more efficient due to the smaller feature di-
mension.

(b) Multiple Objects Joint Atlas

(a) Symmetric Objects under Large Rotations

Figure 10. Limitations. Sets containing symmetric objects under
large rotations may converge partially due to relative position be-
tween semantic parts. In addition, our method is not designed to
align images depicting more than one instance of the shared mode.
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Figure 11. Results without LregA . For each set, we show the original images, and the congealed images with and without LregA ; on the
right are the average image in atlas space and the atlas saliency. This regularization encourages cleaner atlases, e.g., ignoring background
clutter in Guitars, and allows us to better capture the dominant shared content, e.g., focusing only on the face in Art Cats allows us to better
align the third cat from the right.
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