
Supplementary for Black-Box Visual Prompting for Robust Transfer Learning

A. Experimental Setting

A.1. Datasets

Synthetic Datasets Our BlackVIP generates the input-
dependent image-size visual prompt which covers the
whole image region, so we expect that this flexible prompt
design can improve some kind of robustness as well as gen-
eral recognition capability: (1) To evaluate the robustness
on distribution shift (i.e., domain generalization), we con-
sider Biased-MNIST [1] dataset. (2) To evaluate the robust-
ness on adversarial noise and location-agnostic recognition
capacity, we create a variant of the MNIST dataset called
Loc-MNIST. Examples of these two datasets are provided
in Figure 1.

(a) Examples of y = 7 subset in Biased-MNIST [1] with ρ = 0.9. (Top) the
train set is constructed with the spurious correlation between the background
color and digit class (e.g., y = 7 occurs 90% with pink background and 10%
with other random colors in this case). (Bottom) the test set is constructed
with a reversed correlation to that of the train set (e.g., y = 7 occurs 10%
with pink background and 90% with other random colors in this case).

(b) Examples of Loc-MNIST dataset. The real digit from MNIST is located
in the outer area, while the fake digit from another random MNIST image is
placed in the center of the image. (Top) the case where the size ratio of the
real digit to the fake digit is 1:1, and (Bottom) 1:4.

Figure 1. Examples of two synthetic datasets. (a) Biased MNIST
and (b) Loc-MNIST.

Biased MNIST is a modified version of MNIST [15]
where the biases reside in the background colors of the im-
ages of each digit. At train time, each digit has a unique pre-
assigned background color that strongly correlates with the
label. The degree of correlation is determined by the value
ρ ∈ [0, 1], such that (100 × ρ)% of the images that belong
to the same digit have the preassigned color of that digit as
their background color, and the rest are uniformly assigned
to have any of the other colors as their background color. At
test time, we reverse the ratio so that (100×(1−ρ))% of the
images now have the preassigned color as their background
color and vice versa to evaluate the model’s dependency on
superficial features such as the color of the background that
a digit is located on. We prepare the following two environ-
ments 1) easy: ρ = 0.8 and 2) hard: ρ = 0.9.

On the given black blank image with 224 × 224 resolu-
tion, i.e., zero’s array, Loc-MNIST puts an original target
digit image from MNIST that has 28× 28 resolution on the
edge-side (e.g., 0∼27 or 196∼223 for one of vertical or hor-
izontal side and 0∼223 for another side) and puts a random
fake digit (also from the MNIST dataset) on the center. The
location of the target digit in the edge and the class of fake
digit are chosen randomly with uniform probability. A syn-
thetic image is created one by one for each original MNIST
image. We prepare the following two environments 1) easy:
the scale of the target and the fake digit is the same, i.e.,
1:1, and 2) hard: the fake digit is four times larger than the
original digit, i.e., 1:4.

For consistency, we perform the experiments on these
two datasets with a few-shot evaluation protocol. To con-
struct a train set, we randomly sample a subset (K-shot) of
the created images for each class and use the whole test set.

Datasets To extensively evaluate the effectiveness of our
proposed method and baseline approaches, we measure
performance across the following 14 datasets that are
widely used for transfer learning benchmark: Caltech101
[9], OxfordPets [20], StanfordCars [14], Flowers102 [19],
Food101 [3], FGVCAircraft [16], SUN397 [26], DTD [6],
SVHN [18], EuroSAT [11], Resisc45 [4], CLEVR [13],
UCF101 [22], and ImageNet (IN) [7]. Note that these 14
datasets cover diverse visual domains, and they require un-
derstanding various visual semantics like scenes, actions,
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fine-grained categories, textures, satellite imagery, digits,
the number of objects, and the recognition of generic ob-
jects.

Following the protocol in [27,28], we conduct a few-shot
evaluation for all datasets: 16-shot for the train set, 4-shot
for the validation set, and the whole test set. We use the few-
shot split by [28] for each dataset those are also used in [28],
while for Resisc45 and CLEVR, we randomly select the 16-
shot and 4-shot samples for training and validation dataset,
respectively.

A.2. Backbone Model

In this work, we aim at the robust adaptation of pre-
trained models on diverse downstream tasks. For these pre-
trained models, all experiments in this paper are done with
the off-the-shelf vision-language model CLIP [21], and we
adopt the ViT-B/16 for image encoder backbone architec-
ture by default. During the adaptation (training) phase, the
entire components of the pre-trained model are frozen with-
out any architectural modification, and we only manage and
optimize the learnable module Coordinator from the outside
of the pre-trained model.

While input space visual prompting allows it to be ap-
plied to not only VLM, but also any other vision models
like CNNs and ViTs, it requires the user to define the out-
put space mapping, which maps the output prediction cate-
gory set of a pre-trained task to a new downstream category
set [2, 8, 25]. This is another non-trivial problem. There-
fore, we limit our focus to only the VLM that can dynam-
ically build the task-specific head from manual text tem-
plate [12, 21] so that free from defining output space map-
ping.

A.3. Baseline Methods

CLIP Zero-Shot (ZS) CLIP [21] is one of the most pop-
ular vision-language zero-shot models that is widely ex-
ploited for classification, detection, segmentation, and other
vision or vision-language tasks. Based on its well-aligned
vision-language joint embedding space, the zero-shot clas-
sification can be performed with a manual text prompt (also
called template) of each pre-defined class category. In this
paper, we are mainly aiming to improve the CLIP’s strong
zero-shot performance in the few-shot adaptation setting.

BAR Black-Box Adversarial Reprogramming (BAR)
[25] was proposed for efficient transfer learning of pre-
trained model to the medical image domain. Different from
the previous works on Adversarial Reprogramming (AR),
BAR exploits the perturbation-vulnerability of neural net-
works for adaptation purpose rather than attack. By op-
timizing the frame-shaped learnable program, which em-
beds a downstream target image inside of that, BAR steers
the ImageNet pre-trained model to classify the specialized

medical images. Moreover, BAR adopts the zeroth-order
optimizer (ZOO), Randomized Gradient-Free (RGF) [17]
minimization algorithm for black-box transfer learning to
broaden its applications.

When the resolution of the downstream input image is
over that of the pre-training phase, Tsai et al. [25] set the
embedded target image size for 64 × 64 resolution in the
299× 299-size learnable program by default. However, we
observe that such a heavy-pad thin-image design of prompt
degrade the performance significantly, so we tune the reso-
lution of the embedded image and set 194× 194.

VP Similarly, Visual Prompting (VP) aims at adapting a
pre-trained model to downstream tasks via learning input
space visual prompts. Among some candidates for prompt
designs, Bahng et al. [2] adopt the padding-style prompt
so that realized prompts look like the frame-shape program
of ARs. VP learns a universal visual prompt per each
downstream task, and it just adds to all of the images in
a task. Unlike the AR methods or our BlackVIP, the range
of prompted images is unbounded. Following [2], we use
the padding-style prompt, which is 30-pixel sized for each
side by default.

While VP optimizes the parameters in the input space, it
relies on a first-order optimization algorithm that uses the
true gradient of entire model parameters, and we establish
the performance of VP as an upper bound for other input
space black-box optimization approaches, including Black-
VIP. Additionally, by replacing the first-order algorithm
with zeroth-order counterparts, we build two new baselines
VP w/ SPSA and VP w/ SPSA-GC on our extensive exper-
iments. These two methods confirm the effectiveness of our
new components Coordinator and SPSA-GC.

Discussion Although BAR, VP, and BlackVIP share the
generic goal: efficient transfer learning of pre-trained mod-
els via input-space optimization, there are several signif-
icant differences. (1) We propose a novel prompt design
that is automatically formed in an input-dependent manner
rather than the frame-shaped manual design of the input-
independent prompt (or program) of VP (or BAR). (2)
While VP relies on first-order algorithms and BAR adopts
the RGF, we utilize the new variants of SPSA [23], SPSA-
GC, which is enhanced with a proper modification in the
parameter update rule. (3) Contrary to the medical imaging-
only validation in BAR, based on the above two techni-
cal difference, BlackVIP successfully adapt the pre-trained
model to diverse data domains (described in Section B.1.).

A.4. Implementation Details

Architecture For the fixed text prompt design of each
dataset those are shared across all baseline methods and
BlackVIP, we use the same templates provided by [2] for



SVHN, CLEVR, and Resisc45, and [28] for remaining
11 datasets. For the frozen feature extractor (encoder)
part of our Coodinator, we use the ImageNet pre-trained
vit-mae-base checkpoint1 from the HuggingFace. The
output shape of the encoder is N × 768, where N is the
number of instances in the batch. We design the decoder
based on depth-wise separable convolution (DSC) layer [5]
for parameter efficiency. Specifically, we build a block of
[NORM-ACT-CONV] and stack it five times. The NORM and
ACT denote Batch Normalization and Gaussian Error Lin-
ear Unit, respectively. The CONV operation of the first four
blocks is DSC, and the last one is a standard convolutional
layer. Our implementation code is enclosed in .zip file.

To satisfy a fully convolutional design without loss of
expressiveness, tensors that are fed into the decoder must
be shaped in a 3D feature map. For this, we additionally
govern a task-specific single continuous vector ϕt (called
prompt trigger vector), which is concatenated with the out-
put feature vector of encoder leading the appropriate size of
1d vector for reshaping to 3d tensor. In this work, we set
the dimension of the prompt trigger vector to 800, resulting
in 1568 dimensions of concatenated vector that can be re-
shaped to 32× 7× 7 shaped 3D tensor. The prompt trigger
is shared across all instances for a given task.

Optimization and other configurations For a stable ap-
proximation of gradient in practice, ZOO algorithms repeat
the gradient estimation step for several times and use the
mean of those estimates as a final approximation of the gra-
dient. Usually, the approximation quality is proportional to
the number of these repeats. We set this repeat as five times
for all baselines that use ZOO.

Besides the learning rate and learning rate schedule pa-
rameters, ZOO algorithms have some additional algorithm-
specific hyperparameters needed to be tuned. For RGF,
these are the standard deviation of a random gaussian vec-
tor and a smoothing parameter, and for SPSA, these are the
perturbation magnitude and its decaying factor. We provide
the search range of each hyperparameter in Table 1. The
search range for algorithm-specific parameters is based on
the proposal of authors of SPSA [24] and BAR [25]. More-
over, among the valid perturbation distributions of SPSA,
we adopt the Segmented Uniform [−1.0,−0.5] ∪ [0.5, 1.0].

The learning objective is a cross-entropy loss for VP and
BlackVIP and focal loss for BAR (following [25]). For all
black-box approaches, the batch size is set to 128 across
all datasets. Except for the SUN397 (1,000), StanfordCars
(2,500), and ImageNet (500), we optimize all methods dur-
ing 5,000 epochs for convergence. Note that the input space
visual prompting with first-order algorithm already requires
sufficiently large iterations, e.g., 1,000 epoch [2] with full

1https : / / huggingface . co / docs / transformers /
model_doc/vit_mae

dataset, and ZOO demands much more iterations due to the
lack of gradient information.

A.5. Hyperparameter Sweep

In this section, we provide the hyperparameter search
range of each algorithm, summarized in Table 1.

Table 1. Hyperparameter sweep. Large LR (learning rate) of BAR
and VP is based on [2] to directly optimize pixel values rather than
the neural network’s weights. PM denotes perturbation scale, ci.

Hyperparameter Algorithm Search Range

initial LR BAR, VP {40.0, 20.0, 10.0, 5.0, 1.0}
initial LR (a1) BlackVIP {1.0, 0.1, 0.01, 0.005}
min LR BAR {0.1, 0.01, 0.001}
decaying step BAR {0.9, 0.5, 0.1}
LR decaying factor VP, BlackVIP {0.6, 0.5, 0.4, 0.3}
initial PM (c1) BlackVIP {0.01, 0.005, 0.001}
PM decaying factor BlackVIP {0.2, 0.1}
std. of perturbation BAR {1.0, 0.5}
smoothing BAR {0.1, 0.01, 0.001}
gradient smoothing VP, BlackVIP {0.9, 0.7, 0.5, 0.3}

B. Detail Description of Coodinator
On the transfer learning of a pre-trained model which

provides no accessibility about any architectural informa-
tion or actual model parameters, BlackVIP treats this situ-
ation with two novel mechanisms: (1) parameter-efficient
instance-aware prompt generation network, and (2) stable
zeroth-order optimization algorithm that is based on SPSA
[23]. In this section, we provide a detailed description of
the first component, Coordinator.

Different from existing works on visual prompting, we
reparameterize the input space visual prompt ϕ as a neu-
ral network, Coordinator hϕ(·) that generates an input-
dependent visual prompt hϕ(x). Coordinator is composed
with encoder f(·), decoder gϕd

(·) and task-specific learn-
able vector ϕt. The encoder is used for extracting instance-
specific latent feature vector zx = f(x) contributing to
the construction of the optimal input space visual prompt
for each instance. Because our goal in this work is the
broad utilization of pre-trained models on diverse down-
stream tasks, we adopt a pre-trained encoder network op-
timized by a self-supervised learning objective, not by a su-
pervised learning objective or scratch network. Specifically,
we use the ViT-B/16 weights from the Masked AutoEncod-
ing pre-training [10]. We present the grounds for using the
self-supervised learning encoder in the main paper, refer to
Sec. 3. During the training phase, this pre-trained encoder
part is frozen (not updated) and just acts as a feature ex-
tractor. Then, the instance-specific feature vector from the
encoder is conveyed to the decoder for a prompt generation.

https://huggingface.co/docs/transformers/model_doc/vit_mae
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Prompt decoder gϕd
(·) is a lightweight convolutional

neural network, which has learnable parameters less than
10K by default. Note that the generated prompt has the
same shape as the input image, so our prompt covers the
entire region of the image, unlike previous visual prompt-
ing and reprogramming works applied to the partial region
of the image by human-designed.

In addition to the feature vector from the fixed encoder,
the decoder also incorporates an additional input which is
shared for all instances across the current dataset. The so-
called prompt trigger vector ϕt is a continuous vector that
also contributes to the design of a visual prompt by collabo-
rating with the instance-specific rich feature vector from the
encoder. By introducing this prompt trigger vector, the de-
coder of the Coordinator can enjoy additional information
to generate more proper prompts for a given task. Besides,
it helps to build the 3D feature map for the decoder’s input,
which is necessary for designing a parameter-efficient fully
convolutional decoder network.
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