
Supplementary Material for
AssemblyHands: Towards Egocentric Activity Understanding via 3D Hand Pose Estimation

Figure 1. Multi-view camera rigs used in our experiments. Left: Assembly101. Right: Desktop Activities.

1. Camera rigs

Please see example captured frames from both camera
rigs used in our experiments in Fig. 1.

AssemblyHands uses the same camera rig as Assem-
bly101 [4], which consists of 8 RGB cameras of 1080p res-
olution mounted on a static scaffold, and a synchronized
headset with 4 monochrome cameras of VGA resolution,
arranged similarly to the Oculus Quest VR headset.

We also use another multi-camera setup from the Desk-
top Activities subset in the recent Aria Pilot Dataset [3],
which has 12 RGB cameras of 1080p resolution, synchro-
nized to the Project Aria glasses. The glasses are equipped
with one egocentric RGB camera and two monochrome
cameras, but we only use the static exocentric RGB cam-
eras for the purpose of evaluating our multi-view automatic
annotation method.

2. Implementation details

2.1. Processing of exocentric images

For all training and evaluation images, we pre-process
them to remove the lens distortion from both exocentric
images. This significantly simplifies geometric operations
such as triangulation.

At training time, we first project the annotated 3D hand
keypoints to each camera’s image plane, then use the result-
ing 2D keypoints to define hand bounding boxes. Given a
set of keypoint coordinates {(xi, yi),∀i ∈ I} on a single
hand (or both hands), we create a square bounding box cen-
tered on the geometric center of all keypoints, with the side

length L defined as

L = γ ·max

(
max
i∈I

xi −min
i∈I

xi,max
i∈I

yi −min
i∈I

yi

)
, (1)

where γ is an expansion coefficient. It is randomized dur-
ing training with a mean of 1.5. For the 3D feature vol-
ume, the size is 300 mm on each side, centered on the the
third MCP joint. The root position is also augmented dur-
ing training by adding a small random noise in the range of
[−5 mm, 5 mm] to all axes; we have observed that without
this augmentation, the network can learn a trivial solution
(0, 0, 0) for the root joint.

At test time, we need to crop hands based on the output
of a hand detector. However, we found it challenging to
directly apply 2D object detectors for hands: off-the-shelf
models do not achieve very good accuracy in our setup due
to the challenging occlusions, and their detections from dif-
ferent views are not necessarily geometrically consistent.
Instead, we use a more robust heuristic based on the trian-
gulation of body keypoints. Specifically, we first detect 3D
body keypoints from multi-view exocentric images, using
the “2D + Triangulation” approach with a full-image body
keypoint detector trained on MS COCO. Then, we create a
virtual “hand center” keypoint in 3D, by extending 1/3 of
the forearm length (defined from the elbow and wrist key-
points) out from the wrist. Finally, for every camera view,
we can derive an image-space bounding box, centered on
the 2D projection of the “hand center”, with a heuristic size.
We note that a similar heuristic is employed in the open-
source implementation of OpenPose [1].

This initialization of hand bounding boxes is crucial for
the quality of automatically generated annotations. We

1

Figure 2. Visualization of hand detection on two different frames. Green: detected body keypoints (shown: shoulder, elbow, wrist).
Red: estimated hand center. Yellow: hand bounding boxes derived from our heuristic, and the resulting cropped images. Left: the hand is
well centered in the bounding box when the wrist is not bent. Right: hand is not centered when the wrist is bent; this can be corrected by
our iterative refinement at inference time.

found that our iterative refinement during the annotation
pipeline is a key step to reduce the annotation error. How-
ever, when wrong hand boxes are given in the initializa-
tion due to misidentifying left or right hand, the refinement
further accumulates the error because a new hand crop is
generated from the keypoint prediction on the misidenti-
fied hand crop. The introduced hand detection based on 3D
body keypoints is more robust to such failures as the hand
identity is determined from the skeleton structure of human
body, not hand image itself.

Fig. 2 shows examples of detected body keypoints and
derived hand bounding boxes. By construction, the bound-
ing boxes in different views of the same frame are geo-
metrically consistent, and can be directly used in creating
the 3D feature volume. On the other hand, a drawback of
this approach is that the heuristic guess of “hand center”
can be inaccurate, especially when the wrist is significantly
bent. As a result, the crop is not necessarily centered on the
hand, and we need to use a larger size to ensure coverage.
However, this can be corrected by our iterative refinement
scheme during inference; see Fig. 4 in the paper.

2.2. Processing of egocentric images

Based on the annotated keypoints, we generate hand
clips for input to the egocentric hand pose estimator. Given
the 3D world-space coordinates of all joint locations (21 per
hand) on two hands and an egocentric camera, we project
the keypoints to the 2D image space, and then crop the im-
age using bounding boxes that enclose the 2D keypoints.
We remove lens distortion from the original fisheye cam-
eras so that the images correspond to simple pinhole cam-
eras. We also remove crops that are too close to the image
boundary or do not contain hands in a given image. This
preprocessing is separately done for each right or left hand,
so we have two input crops when the two hands are shown
in an image.

Then, given a single cropped image where either the left
or right hand appears, we predict the 3D coordinates of 21

joints in the wrist-relative space. In post-processing, using
the predictions for each hand, we convert a single-hand pre-
diction to two-hand prediction by merging two predictions
on different hand crops generated from the same single im-
age. This two-hand format is used for the pose evaluation
with the action recognition model.

3. Annotation quality

3.1. Comparison to annotation using OpenPose

The open-source OpenPose [1] has been used to auto-
matically annotate hand poses in several existing datasets,
e.g., H2O. We compare to this annotation approach, by run-
ning a 2D + Triangulation baseline with the hand keypoints
predicted by OpenPose.

Table 1 shows the comparison between the OpenPose
baseline and our proposed methods. First, we note that 2D +
Triangulation with OpenPose fails to triangulate on 40.2%
of all the annotated keypoints in our test set, due to either
too few 2D detections or large triangulation error. While
it does achieve a reasonable 5.15 mm MPJPE on the suc-
cessfully triangulated predictions, the high number of miss-
ing annotations is undesirable for the purpose of training an
egocentric model. Note that we vary the distance threshold
between 0 and 20 mm when computing PCK-AUC, and we
observe OpenPose’s PCK value at the maximum cutoff is
59.2%. The rest either do not receive a valid prediction, or
have a prediction error larger than 20 mm.

Both our 2D + Triangulation baseline and final model
MVExoNet-R3 significantly outperform OpenPose. First,
our 2D + Triangulation model significantly increases the ra-
tio of successful triangulations, at the cost of slightly higher
MPJPE. Then, MVExoNet-R3 has both the lowest MPJPE
and a much higher successful annotation rate, with a PCK
value over 85% at the 20 mm threshold.

Annotation method MPJPE PCK-AUC
2D + Triangulation (OpenPose) 5.15∗ 48.1
2D + Triangulation (Ours) 7.97 63.8
MVExoNet-R3 (Ours) 4.20 83.4

* Evaluated on valid predictions only.

Table 1. Comparison to OpenPose-based annotation. While 2D
+ Triangulation with OpenPose is relatively accurate on the valid
predictions, it fails to triangulate on 40.2% of the keypoints, lead-
ing to a very low PCK-AUC value. We use a maximum distance
threshold of 20 mm for PCK-AUC. Our proposed 2D + Triangu-
lation and MVExoNet-R3 both outperform OpenPose by a signif-
icant margin.

3.2. Verb-wise annotation error

We evaluate our annotation method for each verb cate-
gory on manually annotated data. As shown in Fig. 3, we
plot relative improvement of our final annotation method
(i.e., MVExoNet-R3) to the original annotation based on
egocentric hand tracker [2] in Assembly101. For all the
verbs appearing in the manually annotated set, our method
further reduces the error by more than 10 mm compared
to the original annotation. Our annotation particularly im-
proves the quality when two hands are interacting with ob-
jects intricately, such as position screw on, screw, push,
and position. This indicates that our multi-view annotation
is more effective during such heavy hand-object occlusion
than the annotation from egocentric views only.

Owing to this error reduction in pose annotations, in the
downstream task of verb classification (see Table 5 in the
paper), the performance of our SVEgoNet for position is
improved by a large margin of 13%. Considering the qual-
ity of the annotation even for each verb and its support for
verb classification, more refined pose annotation helps ac-
curately recognize user’s hand actions.

4. Action recognition
4.1. Verb label selection

In Assembly101 [4], fine-grained actions are defined as
the combination of a verb and an interacting object, which
consists of 24 classes. Since the verb labels follow a long-
tailed distribution, we select the six most frequent verbs out
of the full list of 24 for our study. These include three main
assembly verbs: pick up, position, screw, and three disas-
sembly verbs: put down, remove and unscrew, which alto-
gether cover 70% of the verb labels introduced in Assem-
bly101.

4.2. Object cues in verb recognition

As noted in the future work (Section 6), we believe us-
ing object information could further help in recognizing the
user’s actions. Since object annotation (e.g., box and pose)

Figure 3. Verb-wise hand pose annotation error reduction in
AssemblyHands. We show relative MPJPE (mm) of our anno-
tations to the original annotations provided by Assembly101 [4].
We observe large reductions in annotation error across all verbs.

for small parts is challenging for this dataset nowadays, we
try to use object labels for verb recognition. We incorpo-
rate object class labels as one-hot encoded frame-level fea-
tures into our pose-based verb classifier. As we reported in
Table 5, the pose-only recognition using SVEgoNet has a
verb recognition accuracy of 54.7%. In contrast, the classi-
fier based on pose + object labels achieves a higher accuracy
of 56.1%. This improvement further inspires us to explore
the use of object bounding boxes and object poses.

References
[1] Z. Cao, G. Hidalgo Martinez, T. Simon, S. Wei, and Y. A.

Sheikh. Openpose: Realtime multi-person 2d pose estima-
tion using part affinity fields. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2019. 1, 2

[2] S. Han, P.-C. Wu, Y. Zhang, B. Liu, L. Zhang, Z. Wang, W. Si,
P. Zhang, Y. Cai, T. Hodan, R. Cabezas, L. Tran, M. Akbay,
T.-H. Yu, C. Keskin, and R. Wang. UmeTrack: Unified multi-
view end-to-end hand tracking for VR. In Proceedings of the
ACM SIGGRAPH Asia Conference, pages 50:1–50:9, 2022. 3

[3] Z. Lv, E. Miller, J. Meissner, L. Pesqueira, C. Sweeney, J.
Dong, L. Ma, P. Patel, P. Moulon, K. Somasundaram, O.
Parkhi, Y. Zou, N. Raina, S. Saarinen, Y. M. Mansour, P.-K.
Huang, Z. Wang, A. Troynikov, R. M. Artal, D. DeTone, D.
Barnes, E. Argall, A. Lobanovskiy, D. J. Kim, P. Bouttefroy, J.
Straub, J. J. Engel, P. Gupta, M. Yan, R. D. Nardi, and R. New-
combe. Aria pilot dataset. https://about.facebook.
com/realitylabs/projectaria/datasets, 2022.
1

[4] F. Sener, D. Chatterjee, D. Shelepov, K. He, D. Singhania, R.
Wang, and A. Yao. Assembly101: A large-scale multi-view
video dataset for understanding procedural activities. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pages 21096–21106, 2022.
1, 3

https://about.facebook.com/realitylabs/projectaria/datasets
https://about.facebook.com/realitylabs/projectaria/datasets

	. Camera rigs
	. Implementation details
	. Processing of exocentric images
	. Processing of egocentric images

	. Annotation quality
	. Comparison to annotation using OpenPose
	. Verb-wise annotation error

	. Action recognition
	. Verb label selection
	. Object cues in verb recognition

