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1. Introduction
This document is a supplementary material that presents:

• theoretical explanation why binary patterns can be
used as efficient feature in out-of-distribution (OOD)
samples detection problem

• some additional experiments which were summarized
in the main manuscript.

2. Theoretical explanation
In most of state-of-the-art networks, the chosen activa-

tion function is the ReLU [2]:

R(z) =

{
0 if z ≤ 0

z otherwise.
(1)

It is noteworthy to mention that

∂R(z)

∂z
=

{
0 if z ≤ 0

1 otherwise.
(2)

Let assume that we are considering a simple fully connected
network, where oln is the nth component of the output of
layer l, aln is the output of neuron n of layer l, xi is the input
sample and wl

nm is the weight vector of the nth neuron of
layer l defined as

oln = aln =

{
R(ol−1 ∗ wl

n) if l > 1

R(x ∗ wl
n) if l = 1.

(3)

Let also assume that wl
mn

t is mth weight of nth neuron of
layer l at iteration t then for fully connected network with
ReLU function we can prove Theorem 1 [1].

Theorem 1 In every layer l, for each neuron n, the gradi-
ents ∂Ei

∂wi
nm

will be zero if the neuron is not activated.

Proof: The primary method used to adjust a network’s pa-
rameters is known as back-propagation, which relies on
stochastic gradient descent. This involves defining an error
function, denoted by E(X, θt), where X refers to a batch of
training data pairs xi, yi and yi represents the expected out-
put for sample xi. The parameter θt denotes the network’s
parameters at iteration t, and the objective of stochastic gra-
dient descent is to optimize the θt that minimize the error
function E(X, θ). During each iteration, the weights are
adjusted as:

wl
mn

t+1 = wl
mn

t − α
∂Ei

∂wi
nm

(4)

It can be noticed that E(X, θt) can be formulated as the
average of the error Ei of each sample xi

Ei = −
c∑

k=1

yik ln(ŷ
i
k) (5)

then

wl
nm

t+1 = wl
nm

t − α
1

N

N∑
i=1

∂Ei

∂wl
nm

(6)

Then we can rewrite the gradient as

∂Ei

∂wl
nm

=
∂Ei

∂aln

∂aln
∂wl

nm

, (7)

For l > 0 we have

∂aln
∂wl

nm

= R′(

N∑
j=0

ol−1
j wl

nj)o
l−1
m =

= R′(zln)o
l−1
m =

{
ol−1
m if neuron is activated (zln > 0)

0 otherwise.
(8)

To simplify notation let assume that

γl
n =

∂Ei

∂aln
(9)
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then

∂Ei

∂aln
=

N∑
j=1

∂Ei

∂al+1
j

∂al+1
j

∂aln
=

N∑
j=1

γl+1
j

∂al+1
j

∂aln
. (10)

Since

al+1
j = R(

c∑
k=0

wl+1
jk alk) (11)

then we obtain

∂al+1
j

∂aln
= R′(zl+1

j )wl+1
j (12)

what leads to

∂Ei

∂wi
nm

= R′(zln)γ
l
nw

l+1
jn . (13)

3. Parameters evaluation
This section presents some results of experiments which

were performed to tune the parameters of the proposed NAP
method. In our experiments, we identified that there is no
single optimal layer or configuration of the parameters that
will give the best results for all databases. In order to estab-
lish the most optimal configuration of our method, we had
conducted several experiments aimed at selecting the single
most promising layer and its configuration. The summary
of the optimized parameters in presented in Tab. 1.

Table 1. Summary of the parameters that need to be tuned in the
proposed NAP based OOD detector

Paramemer Description
p Percentile threshold for binarization in a

convolutional layer
t Type of pooling
τ Hamming distance threshold to decide if a

sample is in or out-of-distribution
k number of layer in network

Fig. 1 depicts exemplary OOD performance results
of various NAP configurations for VGG-16 network [3]
trained on FashionMNIST [4] dataset and evaluated on
other OOD datasets. Subsequent bars correspond to subse-
quent activation layers in the network and parameters con-
figurations.

Each pair of blue and orange bars refers to a single com-
bination of the NAP configuration parameters presented in
Tab. 1. Blue bars correspond to averaged accuracy of sep-
aration FashionMNIST against all other validation OOD

datasets. Orange bars correspond to averaged accuracy on
test OOD datasets. While separating training against test
distributions, we use uncertainty threshold set on valida-
tion distribution according to the OOD evaluation proto-
col described in the main manuscript. As can be observed,
activation patterns approach is capable of achieving very
high OOD detection accuracy but the performance varies
strongly across the selected layers and configurations.

Noticeably in Fig. 1 validation accuracy is correlated
with accuracy on test dataset. It is a worthwhile conclu-
sion which we have successfully incorporated in our auto-
configuration strategy by choosing validation accuracy as a
main optimization criterion.

We delved further into single-layer activation patterns,
analyzing distributions of Hamming distances generated for
samples that come from known and unknown sets of im-
ages. In Fig.2 (for the same network setup as in Fig. 1)
we present the impact of the selected configuration on the
achieved distribution separability. Setting the value of bi-
narization percentile p either to 30 or 90 leads to mutu-
ally exclusive improvement of OOD detection accuracy on
two OOD datasets - MNIST and NormalNoise. This phe-
nomenon is one of the main reasons why selection of pa-
rameters in our method demands so much attention. For
the most of possible pairs of Ds, Dv datasets considered in
this work, exists such a combination of layer index, pooling
and binarization parameters that allow to separate very ac-
curately samples from these datasets by setting a Hamming
distance threshold. Fig. 3 shows examples of these combi-
nations for various dataset pairs. Acknowledging that selec-
tion of the most optimal NAP configurations is not straight-
forward, we designed the auto-configuration scheme based
on exhaustive grid-search.
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Figure 1. Accuracy of all considered single-layer NAP configurations averaged over all Dv for VGG trained on FashionMNIST.

(a) Dv - MNIST, p - 30 (accuracy - 83%). (b) Dv - MNIST, p - 90 (accuracy - 64%).

(c) Dv - NormalNoise, p - 30 (accuracy - 67%). (d) Dv - NormalNoise, p - 90 (accuracy - 79%).

Figure 2. Hamming distance distributions histograms of selected (5th) layer for VGG trained on FashionMNIST.



(a) Model - Resnet Ds - CIFAR10, Dv - FashionMNIST, p
- 90, pool type - avg, layer id. - 1 (accuracy - 90%).

(b) Model - Resnet Ds - MNIST, Dv - CIFAR10, p - 30,
pool type - avg, , layer id. - 9 (accuracy - 100%).

(c) Model - Resnet Ds - TinyImagenet, Dv - NormalNoise,
p - 50, pool type - avg, layer id. - 10 (accuracy - 98%).

(d) Model - VGG Ds - STL10, Dv - CIFAR100, p - 30,
pool type - max, layer id. - 12 (accuracy - 98%).

Figure 3. Selected Hamming distance distributions histograms - examples of high separability.


	. Introduction
	. Theoretical explanation
	. Parameters evaluation

