
Supplementary Material

1. Details of Reviewed Papers
We count the number of papers in which a certain experimental detail is reported. Tab. 1 shows that many papers fail to

describe important details including the number of annotations and the number of ratings per sample. For annotation quality
assessment, no paper report inter-annotator-agreement. The number of papers that employ certain types of evaluation criteria
and rating method are also summarized in Tab. 1. We find that evaluation criteria and how to collect ratings vary from one
paper to another. The full list of surveyed papers is in Tab. 2.

Table 1. The number of papers that report the details. Critical details are often omitted. The way of rating varies by paper.

Count

Numbers # samples 18
# raters 11
# rates / sample 4

Task Design Question 20
Label 20
Instruction 5

Quality check IAA 0
Annotator pool Crowdsourcing 3

NA 17
Crowdsourcing

parameters qualifications 2

compensations 3
Criteria Quality 18

Relevance to prompts 14
Others 2

Types of rating Choice (w/wo ties) 10
Ranking 9
Numeric 3
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Table 2. Full list of surveyed papers.

Title Year Venue

An Image is Worth One Word: Personalizing Text-to-Image Generation using Textual Inversion [6] 2022 ArXiv
AttnGAN: Fine-Grained Text to Image Generation With Attentional Generative Adversarial Networks [27] 2018 CVPR
CogView: Mastering Text-to-Image Generation via Transformers [2] 2021 NeurIPS
CogView2: Faster and Better Text-to-Image Generation via Hierarchical Transformers [3] 2022 ArXiv
Controllable Text-to-Image Generation [11] 2019 NeurIPS
CookGAN: Causality Based Text-to-Image Synthesis [36] 2020 CVPR
CPGAN: Content-Parsing Generative Adversarial Networks for Text-to-Image Synthesis [14] 2020 ECCV
Cross-Modal Contrastive Learning for Text-to-Image Generation [31] 2021 CVPR
DAE-GAN: Dynamic Aspect-Aware GAN for Text-to-Image Synthesis [21] 2021 ICCV
DF-GAN: A Simple and Effective Baseline for Text-to-Image Synthesis [25] 2022 CVPR
DM-GAN: Dynamic Memory Generative Adversarial Networks for Text-To-Image Synthesis [37] 2019 CVPR
DreamBooth: Fine Tuning Text-to-Image Diffusion Models for Subject-Driven Generation [22] 2022 ArXiv
Dual Adversarial Inference for Text-to-Image Synthesis [10] 2019 ICCV
GLIDE: Towards Photorealistic Image Generation and Editing with Text-Guided Diffusion Models [17] 2022 ArXiv
High-Resolution Image Synthesis With Latent Diffusion Models [20] 2022 CVPR
Imagic: Text-Based Real Image Editing with Diffusion Models [9] 2022 ArXiv
Inferring Semantic Layout for Hierarchical Text-to-Image Synthesis [8] 2018 CVPR
Make-A-Scene: Scene-Based Text-to-Image Generation with Human Priors [5] 2022 ECCV
MirrorGAN: Learning Text-To-Image Generation by Redescription [18] 2019 CVPR
Object-Driven Text-To-Image Synthesis via Adversarial Training [12] 2019 CVPR
Photographic Text-to-Image Synthesis With a Hierarchically-Nested Adversarial Network [34] 2018 CVPR
Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding [23] 2022 ArXiv
RiFeGAN: Rich Feature Generation for Text-to-Image Synthesis From Prior Knowledge [1] 2020 CVPR
Scaling Autoregressive Models for Content-Rich Text-to-Image Generation [30] 2022 ArXiv
Semantics Disentangling for Text-To-Image Generation [29] 2019 CVPR
Semantics-Enhanced Adversarial Nets for Text-to-Image Synthesis [24] 2019 ICCV
StackGAN: Text to Photo-Realistic Image Synthesis with Stacked Generative Adversarial Networks [32] 2017 ICCV
StackGAN++: Realistic Image Synthesis with Stacked Generative Adversarial Networks [33] 2018 ArXiv
StoryDALL-E: Adapting Pretrained Text-to-Image Transformers for Story Continuation [16] 2022 ECCV
StyleT2I: Toward Compositional and High-Fidelity Text-to-Image Synthesis [13] 2022 CVPR
Text to Image Generation With Semantic-Spatial Aware GAN [15] 2022 CVPR
Text-to-Image Synthesis Based on Object-Guided Joint-Decoding Transformer [26] 2022 CVPR
TISE: Bag of Metrics for Text-to-Image Synthesis Evaluation [4] 2022 ECCV
Towards Language-Free Training for Text-to-Image Generation [35] 2022 CVPR
Trace Controlled Text to Image Generation [28] 2022 ECCV
Vector Quantized Diffusion Model for Text-to-Image Synthesis [7] 2022 CVPR
Zero-Shot Text-to-Image Generation [19] 2021 PMLR



2. Annotation interface
We show screenshot of our instructions for the annotation task (Fig. 2), annotation interface (Fig. 1), and pre-task qualifi-

cation test for skillfulness qualification (Fig. 3). The implementation of the interfaces will be published.

Figure 1. Annotation interface. Annotators rate the image in terms of fidelity and alignment.



Figure 2. Instructions provided to the annotators.



Figure 3. Screenshot of the pre-task qualification test for skillfulness qualification. Annotators who answer that their first language is
English and give correct answers to the two quiz are allowed to work for our annotation task.



3. Detailed results of human and automatic evaluation
Figure 4 shows the human and automatic evaluation results on COCO. The result demonstrates that the automatic measures

do not align with human evaluation. Table 3 shows the pairwise comparison results by a Tukey’s HSD test. We also compute
Hedge’s g values which indicate the differences between two methods are over one standard deviation apart. We confirm that
the ratings provided for each model show significant differences.

On DrawBench, Stable Diffusion and GLIDE obtain comparable ratings for fidelity as shown in Fig. 5. For alignment,
annotators rate Stable Diffusion the best, while the other models do not show significant differences as in Tab. 4. On Par-
tiPrompts, we observe similar trends, but the difference of fidelity ratings between Stable Diffusion and GLIDE is statistically
significant as in Tab. 5.
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Figure 4. Evaluation results on COCO. (Top) Distributions of human ratings for fidelity and alignment. (Bottom) Automatic evaluation
results. The bottom right plot shows the distribution of sample-level CLIPScore.

Table 3. Pairwise post-hoc test with Tukey’s HSD test for ratings of Fidelity and Alignment on COCO. The numbers provided in the table
are p-values, and the numbers in parentheses are effect size (Hedge’s g).

Real image CogView2 GLIDE LAFITE

Fidelity
CogView2 0.0000 (-2.79) — — —

GLIDE 0.0000 (-2.27) 0.0000 (0.39) — —
LAFITE 0.0000 (-3.69) 0.0000 (-0.48) 0.0000 (-0.89) —

Stable Diffusion 0.0000 (-1.45) 0.0000 (0.84) 0.0000 (0.48) 0.0000 (1.31)

Alignment
CogView2 0.0000 (-1.50) — — —

GLIDE 0.0000 (-1.85) 0.0000 (-0.49) — —
LAFITE 0.0000 (-1.45) 0.0002 (0.18) 0.0000 (0.68) —

Stable Diffusion 0.0000 (-0.67) 0.0000 (0.85) 0.0000 (1.28) 0.0000 (0.72)
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Figure 5. Distributions of human ratings for fidelity and alignment on DrawBench (top) and PartiPrompts (bottom).

Table 4. Pairwise post-hoc test with a Tukey’s HSD test for ratings of Fidelity and Alignment on DrawBench. The numbers provided in
the table are p-values, and the numbers in parentheses are effect size (Hedge’s g).

CogView2 GLIDE LAFITE

Fidelity
GLIDE 0.0000 (0.48) — —

LAFITE 0.0000 (-0.58) 0.0000 (-1.06) —
Stable Diffusion 0.0000 (0.65) 0.1034 (0.21) 0.0000 (1.19)

Alignment
GLIDE 0.5558 (0.13) — —

LAFITE 0.9352 (0.06) 0.8884 (-0.07) —
Stable Diffusion 0.0000 (0.71) 0.0000 (0.64) 0.0000 (0.70)



Table 5. Pairwise post-hoc test with Tukey’s HSD test for ratings of Fidelity and Alignment on PartiPrompts. The numbers provided in the
table are p-values, and the numbers in parentheses are effect size (Hedge’s g).

CogView2 GLIDE LAFITE

Fidelity
GLIDE 0.0000 (0.34) — —

LAFITE 0.0000 (-0.37) 0.0000 (-0.73) —
Stable Diffusion 0.0000 (0.67) 0.0000 (0.33) 0.0000 (1.07)

Alignment
GLIDE 0.1371 (-0.07) — —

LAFITE 0.9504 (0.02) 0.0363 (0.10) —
Stable Diffusion 0.0000 (0.57) 0.0000 (0.62) 0.0000 (0.58)

4. Captions and images used for sample size analysis
The caption and image pairs used for annotation size analysis are shown in Fig. 8. We selected samples where three

annotators gave diverse labels in a pilot data collection. The histogram plots show distributions of human ratings by 60
annotators. We observe variations in the ratings, and some samples show several peaks. This observation indicates that
human evaluation measures other than averaging ratings may be needed.



A gra�ti-ridden building 
in an urban setting, a �re 
hydrant at curbside.

A baby gira�e drinking 
milk from it's mother in a 
�eld.

Adult man displaying 
abilities using �ying 
yellow disc.

A black �u�y cat sitting 
on top of a computer 
keyboard.

A person on a motor bike 
on a road.

Fidelity Alignment

Figure 6. Image and caption pairs used for annotator size analysis. Histograms represent distributions of human ratings.



A large orange and white 
kite �ying in a blue sky.

two guys horseback 
riding and playing on the 
beach.

A tricycle sits outside of a 
garage.

A man who is lifting up a 
piece of luggage.

A closeup of a group of 
bananas on a table

Fidelity Alignment

Figure 7. Image and caption pairs used for annotator size analysis. Histograms represent distributions of human ratings.



a bathroom view of a tub 
and sink wit mirrors

Adult man displaying 
abilities using �ying 
yellow disc.

A room with chairs, a 
table, and a woman in it.

A close up from knees up 
front view of an elephant 
with trunk forward, 
outside on dirt, with other 
elephants, grass, bushes 
and white-blue sky.

Fidelity Alignment

Figure 8. Image and caption pairs used for annotator size analysis. Histograms represent distributions of human ratings.

5. Reporting experimental details for transparency
Our literature review revealed that many papers omit details of experimental configurations of human evaluation. To the

alleviate transparency issue, we offer templates for reporting human evaluation settings. Table 6 summarizes recommended
details to report. For customizable sample text, see Figure 9.



Table 6. Example report of a human evaluation setting.

Dataset details

#captions 1000
#ratings / item 3

#unique annotators 148
Tested models LAFITE, GLIDE, CogView2, Stable Diffusion, Real image

Types of rating 5-point Likert scale
Evaluation criteria Fidelity, Alignment to caption

Annotation details

Platform AMT
Annotator qualification i) Over 18 years old and agreed to work with potentially offensive content.

ii) AMT Masters
Compensation $0.05 / task

Interface Figure 1
Instructions Figure 2

IAA Fidelity: 0.41, Alignment: 0.48 (Krippendorff’s α)

We collected annotations for images generated by tested models for #captions captions, resulting in #annotations in total

annotations. Annotators are invited on crowdsourcing platform . Annotators who annotator qualification are allowed to

work on our task. Krippendorff’s α is α value . #unique annotators annotators participated in total, and the average number

of tasks per annotator was average #tasks per annotator . Annotators get compensation per task for each instance of the

task The median time spent on one task is time spent per task ; that is, the expected hourly wage is expected hourly wage .

Figure 9. Sample template for reporting human evaluation settings.

6. Potential Bias in Annotator Ratings
Even with carefully designed instructions for annotators, they may annotate a text-image pair differently. The causes

of the disagreement between ratings of multiple annotators are, for example, the subjectivity of annotation tasks and the
different stringency of annotators. We therefore describe a potential concern of annotator biases in datasets collected through
crowdsourcing.

Each plot in Figure 10 shows the distribution of the mean ratings of the annotators in our collected dataset. The x- and y-
axes indicate the mean rating score for each annotator and the density of annotators, respectively. The mean alignment/fidelity
scores are computed by taking the average of one annotator’s ratings for different samples. We observe a non-negligible
number of annotators who provide highly biased ratings (the right and left tails of distributions). This result suggests that
there may exist annotator-dependent rating biases. However, this can also happen when the tasks assigned to each annotator
have imbalanced true ratings; in this case, annotators with biased mean ratings may correctly judge their tasks. We consider
a rating correction strategy for task-dependent rating biases to remove the effect of unbalanced task assignments. We first
compute the mean ratings for each task (i.e., text-image pair) and then normalize each rating using the mean. Figure 11
demonstrates the distributions of mean corrected ratings for fidelity and alignment. It can be observed that the distributions
are more “centered”, and the density of annotators with extreme mean scores is reduced compared to that without the rating
correction. On the other hand, there are a few annotators with biased (corrected) ratings, particularly in mean alignment
scores.

In summary, the annotator-dependent bias in quality ratings is not severe in our collected dataset; this is also confirmed
by the high Krippendorff’s α values. We may further enhance the data quality by considering the annotator-dependent bias
in the aggregation of multiple ratings to generate reliable ground truth labels.
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Figure 10. Distributions of mean ratings of each annotator for fidelity and alignment.
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Figure 11. Distributions of mean corrected ratings of each annotator for fidelity and alignment.
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