
Supplementary of Real-time Dynamic Texture Synthesis
Using Neural Cellular Automata

Ehsan Pajouheshgar∗, Yitao Xu∗, Tong Zhang, Sabine Süsstrunk
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1. User Study
We follow the user-study settings introduced by Tes-

faldet et al. [4]. The participants see two videos in random
order, one after another, and are asked to choose the video
that appears more realistic. Tesfaldet et al. [4] in their study
use 12-frame videos with 10 frames-per-second (fps), re-
sulting in videos of 1.2 seconds in length. However, they

loop these videos to create longer videos in order to study
the effect of exposure time. Their results show that for ex-
posure times ≥ 1.2 seconds, the accuracy of the participants
in detecting the real video saturates and does not improve
much. Moreover, they only compare the videos synthesized
by their method with the real videos.

Our user study is slightly different from the one con-
ducted by Tesfaldet et al. [4]. First, we limit ourselves to
the original video length (1.2 seconds) to avoid looping ar-
tifacts. This choice is also justified by the results from [4]
since there is not much difference in their results for ex-
posure times ≥ 1.2 seconds. Second, in addition to Tes-
faldet et al. [4], we experiment with videos synthesized by
different SOTA methods to be able to compare their re-
alism. We compare 4 different methods, including ours,
with each other and with the real videos. These 4 meth-
ods are: DyNCA (Ours), (A) by Tesfaldet et al. [4], (B)
Config FC of STGConvNet by [5], (C) Config ST of STG-
ConvNet by [5]. Our choice of methods for comparison
are based on two factors. First, Tesfaldet et al. [4] intro-
duce the two-stream framework for dynamic texture syn-
thesis and our framework incorporates its idea. Therefore,
their method can be regarded as a baseline method in two-
stream-based dynamic texture synthesis methods. Second,
Xie et al. [5] design a different framework than [4] via a
generative-modeling perspective. While Zhang et al. [6]
have recently updated the two-stream-based method by us-
ing shifted Gram as the loss function and introducing a new
frame sampling scheme, their model is fundamentally simi-
lar to of Tesfaldet et al. [4]. Hence, we have only considered
the two main SOTA DyTS methods in the literature [4,5] for
our comparisons.

We conduct our user study on the Amazon Mechanical
Turk (AMT) platform. We use the same 59 dynamic texture
videos provided by Tesfaldet et al. [4]. Each participant
sees 59 pairs of videos. Similar to [4], the first 3 videos are
warm-up comparisons and are not considered in the final
results. As suggested in [4], we also chose 3 videos with
very low quality, where the quality discrepancy is evident,
as sentinel videos. We thus only consider the responses of
participants who provide correct answers to those 3 sentinel
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videos. We then use the remaining 53 video comparisons in
the evaluation.

We randomly create 100 different experiments by shuf-
fling the order of 59 videos and also by shuffling the video
pairs for each of the 59 videos. Each of the experiments can
be done by a maximum of 3 different participants, and we
do not allow the participants to participate more than once
in our user study. Given the constraints above on the AMT
platform, we received valid responses from 163 unique par-
ticipants, which makes the total number of pairwise com-
parisons equal to 163× 53 = 8639.

Table 1 shows the results. Each entry in the table indi-
cates the number of times that the video of the correspond-
ing column is chosen over the video of the corresponding
row as the more realistic video. The realism score presented
in the last row shows the overall percentage that the corre-
sponding column was chosen as the more realistic video.
These results demonstrate that DyNCA has the highest re-
alism score (54.9%) among the DyTS methods.

Real DyNCA A [4] B [5] C [5]

Real N/A 249 218 196 69
DyNCA 680 N/A 342 394 175

A [4] 625 520 N/A 413 231
B [5] 624 469 381 N/A 127
C [5] 819 695 680 732 N/A

Total Won 2748 1933 1621 1735 602
Total Lost 732 1591 1789 1601 2926

Realism Score 79.0%
±0.7%

54.9%
±0.8%

47.5%
±0.9%

52.0%
±0.9%

17.1%
±0.6%

Table 1. Pair-wise comparison results from our user study. The
participants see two videos, one after another, in random order and
are asked to choose the video that appears more realistic. Each en-
try in the table shows the number of times that the video of the cor-
responding column was chosen over the video of the correspond-
ing row as the more realistic video. The realism score presented
in the last row shows the overall percentage that the correspond-
ing column was chosen as the more realistic video. Our DyNCA
achieves the highest realism score compared to the other DyTS
methods (54.9%).

2. Demo
Our demo is built on top of the open-source demo pro-

vided by Niklasson et al. [3] in their Self-Organizing Tex-
tures paper. Niklasson et al. implement the NCA model
using Javascript and WebGL frameworks. We implement
DyNCA by building on top of their codebase. Figure 2 and
3 show screenshots of our real-time interactive demo avail-
able at https://dynca.github.io. We also provide the synthe-
sized videos for our Dynamic Style Transfer experiments at
https://dynca.github.io/#style transfer.

Besides the screenshots of our demo, we benchmark the

performance of the WebGL demo on various devices, in-
cluding computers and smartphones, and show that DyNCA
can synthesize dynamic video textures in real time on low-
end GPUs.

2.1. Qualitative Results

Demo Type: Vector Field Motion: Figure 2 shows the
demo of DyNCA models that are trained with vector field
supervision. The users can choose the desired target vec-
tor field and target appearance, and our demo will synthe-
size the video in real time. The discussed real-time editing
controls including Speed Control, Direction Control, Edit-
ing Brush, and Local Coordinate Transformation are also
shown in Figure 2. The users can click on the canvas to edit
the synthesized video using the brush tool. Our demo also
allows the users to control the resolution by the resolution
sliders. The resolution control simply changes the spatial
dimensions of the seed H and W and re-runs the DyNCA
model. The DyNCA models provided in Vector Field Mo-
tion Demo are trained without Multi-Scale Perception and
with a seed size of 128 × 128. The users can also choose
between the DyNCA-S and DyNCA-L configurations.

Demo Type: Video Motion: Figure 3 shows a screen-
shot of the DyNCA demo with models trained with video
supervision. The users can choose the desired video used to
train the DyNCA model. Here, we train the DyNCA mod-
els with Multi-Scale Perception enabled and a seed size of
256×256. The users can also choose between the DyNCA-
S and DyNCA-L configurations.

2.2. Quantitative Results

For benchmarking the performance of our real-time
DyNCA demo, we run the model for 500 steps to calcu-
late the statistics of steps-per-second, frames-per-second
(FPS), and how many milliseconds it takes for generating
one frame. We show the results for various devices includ-
ing computers and smartphones in Table 2 and 3. Table 2
summarizes the vector field motion performance when we
map 24 NCA steps to one frame, and Table 3 the video mo-
tion when we map 64 NCA steps to one frame. The models
trained for video motion are slightly slower because of uti-
lizing multi-scale perception.
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Figure 2. A screenshot for our demo on vector field motion. Users can choose from 45 different target appearance images and 12 different
target vector fields, 2 different DyNCA configurations, and 3 different local coordinate transformations.
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Figure 3. A screenshot for our demo on video motion. Users can choose from 59 different target videos, 2 different DyNCA configurations,
and 3 different local coordinate transformations.
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Device name-CPU-GPU DyNCA
Config Seed Size steps/s↑ FPS↑ ms/step↓

Desktop Computer
AMD Ryzen 3970X

NVIDIA GeForce RTX 3090

S 128× 128 14 286 595.24 0.07
256× 256 4717 196.54 0.21

L 128× 128 10 000 416.67 0.10
256× 256 2688 112.01 0.37

MacBook Pro (16-inch, 2021)
Chip Apple M1 Pro

S 128× 128 2747 114.47 0.36
256× 256 879 36.61 1.14

L 128× 128 1838 76.59 0.54
256× 256 569 23.70 1.76

Terrans Force X711 PLUS 67SH1
Intel(R) Core(TM) i7-6700K

GTX 980M GPU

S 128× 128 2212 92.18 0.45
256× 256 484 20.17 2.07

L 128× 128 1381 57.55 0.72
256× 256 303 12.64 3.30

MacBook Pro (13-inch, 2020)
2.3 GHz Quad-Core Intel Core i7
Intel Iris Plus Graphics 1536 MB

S 128× 128 1299 54.11 0.77
256× 256 247 10.28 4.05

L 128× 128 818 34.10 1.22
256× 256 160 6.67 6.25

Apple iPhone 14
Hexa-core Apple GPU (5-core graphics)

S 128× 128 1037 43.22 0.96
256× 256 217 9.06 4.60

L 128× 128 643 26.78 1.56
256× 256 130 5.42 7.69

Samsung Galaxy Z Flip4
Octa-core CPU Adreno 730 GPU

S 128× 128 1029 42.87 0.97
256× 256 223 9.30 4.48

L 128× 128 608 25.34 1.64
256× 256 141 5.88 7.09

iPad Air (4th generation)
A14 Bionic chip

S 128× 128 697 29.06 1.43
256× 256 139 5.78 7.21

L 128× 128 450 18.75 2.22
256× 256 93 3.87 10.76

Apple iPhone 12
A14 Bionic chip

S 128× 128 717 29.89 1.39
256× 256 162 6.74 6.18

L 128× 128 457 19.04 2.19
256× 256 101 4.23 9.84

Table 2. Benchmark of DyNCA WebGL implementations on different devices. This table shows the results for the Demo Type Vector Field
Motion. In this configuration we set T = 24, i.e. we map 24 DyNCA steps to one video frame.
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Device name-CPU-GPU DyNCA
Config Seed Size steps/s↑ FPS↑ ms/step↓

Desktop Computer
AMD Ryzen 3970X

NVIDIA GeForce RTX 3090

S 128× 128 10 638 166.22 0.09
256× 256 2688 42.00 0.37

L 128× 128 8065 126.01 0.12
256× 256 2415 37.74 0.41

MacBook Pro (16-inch, 2021)
Chip Apple M1 Pro

S 128× 128 2326 35.34 0.43
256× 256 761 11.89 1.31

L 128× 128 1602 25.04 0.62
256× 256 508 7.93 1.97

Terrans Force X711 PLUS 67SH1
Intel(R) Core(TM) i7-6700K

GTX 980M GPU

S 128× 128 1923 30.05 0.52
256× 256 437 6.83 2.29

L 128× 128 1225 19.15 0.82
256× 256 278 4.35 3.59

MacBook Pro (13-inch, 2020)
2.3 GHz Quad-Core Intel Core i7
Intel Iris Plus Graphics 1536 MB

S 128× 128 1055 16.48 0.95
256× 256 214 3.35 4.66

L 128× 128 682 10.66 1.47
256× 256 139 2.17 7.20

Apple iPhone 14
Hexa-core Apple GPU (5-core graphics)

S 128× 128 929 14.52 1.08
256× 256 191 2.98 5.24

L 128× 128 597 9.32 1.68
256× 256 117 1.82 8.57

Samsung Galaxy Z Flip4
Octa-core CPU Adreno 730 GPU

S 128× 128 873 13.63 1.15
256× 256 207 3.23 4.84

L 128× 128 557 3.96 3.94
256× 256 129 2.02 7.74

iPad Air (4th generation)
A14 Bionic chip

S 128× 128 600 9.37 1.67
256× 256 134 2.09 7.48

L 128× 128 412 8.70 1.80
256× 256 85 1.33 11.79

Apple iPhone 12
A14 Bionic chip

S 128× 128 598 0.36 1.67
256× 256 144 2.26 6.92

L 128× 128 418 6.54 2.39
256× 256 92 1.43 10.89

Table 3. Benchmark of DyNCA WebGL implementations on different devices. This table shows the results for the Demo Type Video
Motion. In this configuration multi-scale perception is enabled, and we set T = 64, i.e., we map 64 DyNCA steps to one video frame.
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3. Training Details of DyNCA

We adopt the checkpoint pool trick introduced in [2]. We
use a pool size of 256 and initialize the pool with zero-filled
constant tensors as the seed. During training, we select a
batch of states from the pool, evolve those states accord-
ing to the DyNCA update rule, and then put the updated
states back in the pool. Using a checkpoint pool allows the
DyNCA model to see longer horizons of its PDE update
rule, and helps with the long-term stability of the DyNCA
evolution. Once every 8 epochs we replace one of the states
in the pool with the initial seed state. This helps DyNCA to
remember the seed state as the initial state of the PDE.

We also use the overflow loss introduced in [2, 3] to
ensure training stability. Given a cell state of DyNCA
St ∈ RH×W×C , the overflow loss Lover of S is defined
as:

Lover =
1

HWC

W∑
i

H∑
j

C∑
c

∣∣St
i,j,c − clip[−1,1](S

t
i,j,c)

∣∣
clip[a,b](x) = max(a,min(x, b)), (1)

where Si,j,c is one of the entries of the DyNCA state tensor
S. Our final training objective is:

Lfinal = LDyNCA + cLover, (2)

where c is the overflow loss weight. Recall that LDyNCA,
defined in page 4 section 4 of the main paper, consists of
the DyNCA objectives for fitting the target appearance and
target dynamics. The overflow loss is only computed on the
last cell state in one training epoch.

In addition, we also adopt the gradient normalization
trick introduced in [3], and normalize the L2 norm of each
layer’s gradient before applying them. Gradient normaliza-
tion stabilizes the training and helps to prevent divergence
during training. We train for 4000 epochs with an initial
learning rate of 0.001, while multiplying the learning rate
by 0.3 at 1000 and 2000 epochs.

For the optic flow prediction network, we re-implement
the MSOENet introduced in [4] with PyTorch. We use the
pre-trained TensorFlow model weights provided by [4] and
transfer those weights to our PyTorch model.

In the following sections, we discuss the details of
motion-learning training schemes from, first, motion from
vector fields and, second, motion from videos.

3.1. Motion From Vector Field

For training DyNCA to synthesize motion according to a
target vector field, we pick two synthesized images Ig

t1 , I
g
t2

from the synthesized image sequence, and evaluate the loss

Lmvec using these two images. Recall our loss functions
from Equations (6, 7, 8) in page 5 of the main paper:

Ldir =
1

HW

∑
i,j

(
1−

Ug
ij · U t

ij∥∥Ug
ij

∥∥
2

∥∥U t
ij

∥∥
2

)
, (3)

Lnorm =
1

HW

∑
i,j

∣∣∣∣ T

t2 − t1

∥∥Ug
ij

∥∥
2
−
∥∥U t

ij

∥∥
2

∣∣∣∣ . (4)

Lmvec = (1.0−min{1.0,Ldir})Lnorm + γLdir, (5)

We use T = 24 in our motion from vector field exper-
iments. We set t1 to be the timestep of the selected states
from the checkpoint pool and set t2 = t1 + U(32, 128),
where U(32, 128) is a randomly chosen integer between 32
and 128. We use a seed size of 128 × 128 and a batch size
of 4. We set the direction loss weight γ = 1.5, and the over-
flow loss weight c = 100.0. We set the initial motion loss
weight to λ = 10.0 and then anneal this weight according to
the appearance loss. We find this weight annealing helpful
for fitting the motion from a target vector field.

In the next section, we provide the mathematical expres-
sions of the target vector fields we use to train DyNCA.

3.1.1 Mathematical Expression of Target Vector Fields

We provide the mathematical definitions of each of the
12 hand-crafted motion vector fields we use to train the
DyNCA models. Let Ũ t

i,j be the un-normalized motion vec-
tor for each point (i, j) on the vector field image with size
H,W , where i ∈ [−W

2 , W
2 ] and j ∈ [−H

2 ,
H
2 ]. To obtain

the final target vector field U t, we L2-normalize Ũ t using
the following equation:

U t =
Ũ t

1
HW

∑
i,j ||Ũ t

i,j ||2
(6)

• Right. Ũ t
i,j = (cos(0◦), sin(0◦)).

• Up. Ũ t
i,j = (cos(270◦), sin(270◦)).

• Right acc. Right. Ũ t
i,j = ( 2i+W

2 × cos(0◦), sin(0◦)).

• Right acc. Down. Ũ t
i,j = ( 2j+H

2 × cos(0◦), sin(0◦)).

• Circular. Ũ t
i,j = ( j√

H2+W 2
, −i√

H2+W 2
).

• Converge. Ũ t
i,j = ( −i√

i2+j2
, −j√

i2+j2
).

• Diverge. Ũ t
i,j = ( i√

i2+j2
, j√

i2+j2
).

• Hyperbolic. Ũ t
i,j = ( j√

H2+W 2
, i√

H2+W 2
).

7



• 2Block X.

Ũ t
i,j =

{
(cos(0◦), sin(0◦)), j ≥ 0,

(cos(180◦), sin(180◦)), j < 0.

• 2Block Y.

Ũ t
i,j =

{
(cos(90◦), sin(90◦)), j ≥ 0,

(cos(270◦), sin(270◦)), j < 0.

• 3Block.

Ũ t
i,j =


(cos(0◦), sin(0◦)), j ≥ 0,

(cos(180◦), sin(180◦)), i ≥ 0, j < 0,

(cos(90◦), sin(90◦)), i < 0, j < 0.

• 4Block.

Ũ t
i,j =


(cos(0◦), sin(0◦)), i ≥ 0, j ≥ 0

(cos(270◦), sin(270◦)), i ≥ 0, j < 0

(cos(90◦), sin(90◦)), i < 0, j ≥ 0,

(cos(180◦), sin(180◦)), i < 0, j < 0.

3.2. Motion From Video

3.2.1 Dynamic Texture Synthesis

We use video textures from the dataset introduced in [4],
employing all 12 frames in each video for training. When
learning the motion from target videos, DyNCA iterates be-
tween 80 and 144 steps at each training epoch. The over-
flow loss weight c is 1.0. When training with a seed size
of 128 × 128, we set the batch size to 4. For training with
256× 256 seed size, we set the batch size to 3 due to GPU
memory limits.

DyNCA is sensitive to λ, the weight of the motion loss.
Small λ’s can cause wrong motion or fixed frames while
large values can lead to failed texture fitting. To automati-
cally set the weight for motion loss, we first train DyNCA
for 1000 epochs with an empirical motion loss weight of
5.0. Then we record the median of the motion loss, denoted
as Lmedian

mvid , and re-initialize DyNCA and the pool. We find
a roughly linear relationship between the median loss and
the proper weight and set the weight according to it. We
give the concrete values of λ for each DyNCA configura-
tion as follows:

• S-128, L-128: 5.82× Lmedian
mvid − 1.05.

• S-256, L-256: 6.04× Lmedian
mvid − 2.17.

Finally, we train DyNCA with extra 4000 epochs.

3.2.2 Choice of NCA Interval in Video Motion

When DyNCA learns target motions from videos, it uses T
steps to fit one frame of the video. Larger T can contribute
to a better fitting of the target motion and appearance since
DyNCA acts as a discrete-time PDE and thus more time
steps can make the result more precise. We show results
with DyNCA intervals of 32 compared to 64, which is what
we use in the experiments, in Figure 4.

T
ar

ge
t

64
 S

te
ps

32
 S

te
ps

Appearance Motion

Figure 4. Comparison between training with 32 and 64 DyNCA
time intervals for fitting one frame. Fewer DyNCA steps lowers
the quality of the synthesized frame and leads to wrong motion.
The two columns of flow images come from water 3 and flag 2 in
the dataset of [4]

We can see that with fewer DyNCA steps, the quality
of the texture synthesis decreases and artifacts occur. We
also observe that DyNCA might generate wrong motions
than the target video after training with a small number of
intervals. Therefore, we select the maximum DyNCA steps
in DyNCA-L-2562 to train on a single Nvidia-A100 without
exceeding memory, which is limited to 64. We use the same
setting across all DyNCA configurations to ensure consis-
tency.

3.2.3 Dynamic Style Transfer

We use the videos in the dataset introduced in [4] as the
sources of target motions and use the images in figure 5 as
the sources of target appearances. We use the same train-
ing settings for dynamic style transfer as in dynamic tex-
ture synthesis (DyTS), except for the weight setting scheme.
The target appearance and target motion in dynamic style
transfer might be incompatible with each other. Hence, the
automatic weight setting scheme in DyTS can generate in-
correct weight values, leading to low-quality results. There-
fore, we manually set the motion loss weight λ in dynamic
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Target Dynamics Target Appearance Weight

flames

cartoon fire 1 2.0
cartoon fire 2 3.0
cartoon fire 4 2.0
cartoon fire 5 0.5
cartoon fire 6 2.0

fireplace 1
cartoon fire 2 5.0
cartoon fire 4 8.0
cartoon fire 6 8.0

fireplace 2

cartoon fire 2 10.0
cartoon fire 3 9.0
cartoon fire 4 5.0
cartoon fire 6 9.0

sea 2

cartoon water 1 3.0
cartoon water 2 3.0
cartoon water 3 6.0
cartoon water 4 3.0

water 3
cartoon water 1 3.0
cartoon water 3 0.5
cartoon water 4 0.5

Table 4. Weight settings of dynamic style transfer with DyNCA-L-
256. All target dynamics come from the dataset introduced in [4].
Target appearance images refer to figure 5.

style transfer experiments. Concrete values are given in ta-
ble 4.

3.3. Limitations

Although we have a scheme to automatically set the mo-
tion loss weight λ, we observe that the automatic weight
leads to poor results in 7 of the 59 video textures in the
dataset introduced in [4]. This can cause low-quality syn-
thesized videos or diverging synthesis. Diverging synthe-
sis means that DyNCA cannot generate meaningful patterns
during video synthesis after a certain number of timesteps.

To solve this problem, we manually set the motion loss
weight λ for those 7 videos on both DyNCA-S and DyNCA-
L configurations. We show the concrete values of the man-
ually set weights for each of these 7 dynamic texture videos
in Table 5, and Table 6. Table 5 shows both the manual and
automatically set weights for 2 of the 7 videos that yield
low-quality results when we use the automatic weight set-
ting scheme. Table 6 shows both the manual and automat-
ically set weights for 5 of the 7 videos that yield diverging
results when we use the automatic weight setting scheme.

NCA
Configs Weight Scheme flames sea 2

S-256 Automatic 5.5 2.1
Manual 3.0 4.0

L-256 Automatic 5.7 2.0
Manual 2.0 4.0

Table 5. Two low-quality textures when using automatic weight
settings. After manually tuning the weights, DyNCA can synthe-
size realistic video textures.

4. Quantitative Evaluation of Multi-scale Per-
ception Ablation Study

In the main paper, we show qualitative results of the ab-
lation study for multi-scale perception. We further quan-
titatively evaluate the effect of multi-scale perception by
observing Lappr and Lmvid during video synthesis after
training. In video synthesis, DyNCA generates one frame
every T steps, where T = 64. Denote two consecutive
frames as Ig

t , I
g
t+T , where t is the current time step. We

compute Lappr for Ig
t and all frames in the target video.

Then we average the result to obtain Lt
appr. The final test

Lappr is obtained via averaging over all time steps. We also
adopt this scheme for computing Lmvid, where the inputs
are Ig

t , I
g
t+T .

In Table 7, we can see that multi-scale perception helps
decrease the loss values overall. When DyNCA has more
parameters and the resolution of seeds is large (DyNCA-L-
256), the effect becomes more obvious.

5. Ablation Study for Positional Encoding
We demonstrate qualitatively and quantitatively that our

proposed positional encoding improves the performance of
DyNCA.

5.1. Motion from Vector Field

In the main paper, we quantitatively show that using
Replicate Padding + Cartesian Positional Encoding (CPE)
achieves better results compared to other padding strategies
without positional encoding. The results provided in the pa-
per were averaged over 10 different target appearances and
4 different structured motion vector fields (Circular, Con-
verge, Diverge, and Hyperbolic). We provide both qualita-
tive and quantitative results for other motion vector fields.
We compare DyNCA with CPE to 3 different baselines that
use different padding strategies (Zero-Padding, Replicate-
Padding, and Circular-Padding) but do not utilize positional
encoding. We use the DyNCA-S configuration and train the
models with a seed size of 128× 128.
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Figure 5. Target appearance images used in dynamic style transfer with DyNCA. Our dynamic style transfer synthesized videos are
available at https://dynca.github.io/#style transfer.

NCA
Configs Weight Scheme ants sky clouds 1 smoke 2 smoke 3 calm water 2

S Automatic 4.6 10.0 5.8 7.9 6.7
Manual 0.2 0.25 0.1 0.5 1.0

L Automatic 4.1 10.0 6.8 6.5 6.6
Manual 0.2 0.25 0.1 1.0 1.0

Table 6. Five textures that will diverge during video synthesis when using automatic weight settings. After manually tuning the weight,
DyNCA can robustly synthesize realistic video textures.

NCA
Configs

Lappr Lmvid

Multi Single Multi Single

DyNCA-S-128 3.1816 3.1762 0.1707 0.1670
DyNCA-L-128 3.1267 3.1789 0.1641 0.1654
DyNCA-S-256 2.5536 2.6343 0.1959 0.2008
DyNCA-L-256 2.5633 2.6918 0.1901 0.1979

Table 7. Loss values during video synthesis after training. Multi-
scale perception helps decrease the values of Lappr and Lmvid,
thus contributing to DyNCA better fitting the target appearance
and motion.

5.1.1 Qualitative Analysis

Figure 6 shows the qualitative results of our ablation study
for positional encoding. The first two rows in Figure 6 illus-
trate the 12 different target vector fields we used in our train-
ing. We define a Structured Vector Field as a vector field
in which either the direction or the magnitude of the motion
is position-dependent. For example, in the Right acc. Right
and Right acc. Down vector fields, the magnitude of the
motion depends on the position. In the Converge, Diverge,
2Block X, 2Block Y, 3Block, and 4Block vector fields, the
direction of the motion is position-dependent. And finally,
in the Circular, and Hyperbolic vector fields, both the mo-
tion magnitude and motion direction depend on the posi-
tion.

Figure 6 shows snapshots of the optic flow for the videos
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synthesized by the baselines and the final DyNCA configu-
ration utilizing CPE. We can observe that for simple vector
fields, such as Right and Up, all of the baselines fit the mo-
tion and generate acceptable results. However, when the
target vector field becomes more structured and complex,
the baselines fail to learn the correct motion. For exam-
ple, all the baselines fail when the motion magnitude is
position-dependent. Although the DyNCA baselines with
zero-padding and replicate padding are able to fit some
structured target vector fields such as Diverge and 2Block X,
we can observe that after resizing the input seed to 256×256
the baseline fails to generate the correct motion.

5.1.2 Quantitative Analysis

For the quantitative results, we use the same DyNCA-
S configuration and train the baselines for all 12 dif-
ferent target fields on the following 10 target ap-
pearance textures: bubbly 0101, chequered 0121, fi-
brous 0145, cracked 0085, interlaced 0172, water 3,
smoke 2, smoke plume 1, calm water 4, and sea 2. To
evaluate the motion direction loss Ldir and motion mag-
nitude loss Lnorm, we synthesize a 330 frame video and
exclude the first 30 frames. We then feed the remaining
300 frames into the optic flow prediction network provided
in [4] and compare the estimated optic flow with the target
vector fields. We average the losses over the 300 frames and
over all of the target appearances and report the results in
Table 8. The results show that for simpler vector fields such
as Right and Up, circular padding works better than CPE.
However, for more complex and structured vector fields,
CPE achieves better results both in terms of motion direc-
tion loss Ldir and motion magnitude loss Lnorm.

5.2. Motion from Video

5.2.1 Qualitative Analysis

Without positional encoding, we observe several failed or
distorted synthesized video frames, as shown in Figure 7.
Training without CPE can cause artifacts on synthesized
frames and can lead to texture-less images of low quality.

5.2.2 Quantitative Analysis

In Table 9, we record the loss values during video synthesis
obtained from DyNCA trained with and without Cartesian
Positional Encoding(CPE). The method for obtaining Lappr

and Lmvid is the same as in the quantitative evaluation of
the multi-scale perception ablation study, namely average
across all ground-truth frames.

In all DyNCA settings, positional encoding helps de-
crease the test loss during video synthesis, indicating the
importance of our proposed positional encoding method.

6. More Results on Dynamic Texture Synthesis
We show more qualitative results on dynamic texture

synthesis in Figures 8. An interactive demo is available on
our website https://dynca.github.io.

7. More Results on Dynamic Style Transfer
We show more results on dynamic style transfer in Fig-

ures 9. The synthesized videos are available on our website
https://dynca.github.io/#style transfer.
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Figure 6. Qualitative comparison of DyNCA baselines with different padding strategies and with the proposed DyNCA model with
Cartesian Positional Encoding (CPE). We observe that the DyNCA with CPE better fits the target motion. Moreover, the model using
CPE is able to synthesize the correct motion regardless of the seed size. The target appearance used is chequered 0121 from the DTD [1]
dataset.
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Seed

Size
Loss Config Right Up

Right

acc. Right

Right

acc. Down
Circular Converge Diverge Hyperbolic 2Block X 2Block Y 3Block 4Block

1
28

×
1
28

Ldir

CPE 0.027 0.032 0.055 0.049 0.048 0.072 0.075 0.053 0.102 0.085 0.107 0.104

Zero 0.035 0.032 0.052 0.059 0.124 0.241 0.165 0.116 0.170 0.169 0.326 0.261

Replicate 0.024 0.033 0.054 0.047 0.241 0.339 0.344 0.345 0.289 0.365 0.336 0.452

Circular 0.022 0.027 0.025 0.025 0.979 0.997 0.994 0.985 0.985 0.998 0.659 0.988

Lnorm

CPE 0.227 0.183 0.251 0.246 0.233 0.230 0.229 0.249 0.268 0.232 0.251 0.229

Zero 0.238 0.182 0.339 0.303 0.300 0.312 0.263 0.307 0.318 0.277 0.279 0.273

Replicate 0.201 0.190 0.378 0.330 0.371 0.301 0.344 0.438 0.341 0.350 0.284 0.330

Circular 0.213 0.153 0.551 0.555 0.618 0.651 0.531 0.759 0.837 0.819 0.179 0.651

25
6
×

25
6

Ldir

CPE 0.021 0.026 0.044 0.045 0.050 0.059 0.058 0.047 0.089 0.068 0.095 0.098

Zero 0.023 0.024 0.037 0.048 0.384 0.491 0.446 0.322 0.543 0.474 0.441 0.503

Replicate 0.020 0.023 0.058 0.040 0.467 0.494 0.457 0.492 0.579 0.617 0.483 0.555

Circular 0.018 0.021 0.021 0.020 0.981 0.998 0.994 0.999 0.995 1.010 0.662 0.994

Lnorm

CPE 0.202 0.167 0.215 0.210 0.221 0.210 0.217 0.222 0.236 0.208 0.231 0.220

Zero 0.214 0.169 0.411 0.372 0.423 0.283 0.254 0.364 0.254 0.228 0.255 0.340

Replicate 0.185 0.169 0.410 0.444 0.408 0.317 0.329 0.533 0.279 0.295 0.287 0.329

Circular 0.196 0.139 0.555 0.540 0.634 0.634 0.518 0.926 0.839 0.915 0.181 0.798

Table 8. Quantitative comparison of DyNCA baselines with different padding strategies with the proposed DyNCA model with Cartesian
Positional Encoding (CPE). We observe that DyNCA with CPE can better fit most target motions.

13



Ta
rg

et
Pl

ai
n

C
PE

Figure 7. Comparison between training with and without Carte-
sian Positional Encoding (CPE). The first row shows the target
appearance texture. The results without CPE (second row) have
less texture and more artifacts compared with the third row (with
CPE). The results are obtained with DyNCA-S-256.

NCA
Configs

Lappr Lmvid

CPE Plain CPE Plain

DyNCA-S-128 3.1762 4.3809 0.1670 0.1874
DyNCA-L-128 3.1789 3.9818 0.1654 0.1834
DyNCA-S-256 2.5536 2.9358 0.1959 0.2102
DyNCA-L-256 2.5633 2.8756 0.1901 0.1980

Table 9. Loss values during video synthesis after training. ”Plain”
refers to not adding positional encoding to cell states. CPE con-
tributes to a better fitting of target appearance and motion.
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Figure 8. Results of dynamic texture synthesis with DyNCA-L-256.
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Figure 9. Results of dynamic style transfer with DyNCA-L-256.
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