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Figure 1. We propose a lightweight approach to reconstruct images at novel views and times from a stereo video, captured with standard
cameras (e.g., cellphones). We build upon X-Fields and propose several key ideas including regularization losses and non-linear coordinates
to significantly improve the results. Our method runs in near real-time rates (23 fps) and has low memory and storage costs. Our system
can be deployed on VR and light field displays to provide an immersive experience for the users (Lume Pad with a light field display shown
on the right).

In this supplementary document, we provide additional
implementation details, ablation results, and qualitative
comparisons.

1. Blending Network
In this section, we provide further details about the

blending network training. As discussed in the paper, we
train a UNet on the Vimeo90K [8] dataset to generate
weight maps to blend the warped frames. Each scene in
Vimeo90K consists of 7 frames. We use the corner frames
(1 and 7) as reference frames and randomly select an inter-
mediate frame from 2-6. We apply data augmentation tech-
niques like random horizontal and vertical flip, and crop-
ping to the sequence. We use Zhang et al.’s optical flow
method [9] to estimate the flow between intermediate and
reference frames. The reference frames are warped using
these flows and the weight maps from the UNet are used to
smoothly blend these warped frames. We use the following
loss to train our blending network:

L = λrLr + λpLp (1)

where λr and λp are set to 100 and 0.05 in our implemen-
tation. The two terms are described below.
Reconstruction Loss Lr We use the commonly used

pixel-wise L1 loss [2,5] between the blended image, Ĩt, and
the ground truth intermediate frame, It.

Lr = ∥Ĩt − It∥1. (2)

Perceptual Loss Lp In addition, we utilize a VGG based
perceptual loss [2, 5] to improve the details in the blended
image [10]. Specifically, we define the loss function as:

Lp = ∥ϕ(Ĩt)− ϕ(It)∥22, (3)

where ϕ is the response of conv4 3 layer of the pre-trained
VGG-16 network.

Architecture The UNet architecture is described in
Fig. 2. This network takes a 16 channel input (two input
images, warped images and the corresponding flows) and
estimates a one channel weight map. We use a LeakyReLU
activation function for all the layers except the output for
which we use sigmoid.

2. Multi-plane Disparity
We provide another illustrative figure (Fig. 4) for multi-

plane disparity using a real example. The network outputs
multi-planes with objects close to each other in both views
uj . These planes are shifted and merged using the max op-
erator to obtain the final disparity, J(uj , ti). Although the
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Figure 2. This figure shows the UNet architecture used for our
blending network. We use a LeakyReLU activation function for
all the layers except the output for which we use sigmoid.

Table 1. Effect of core components on view synthesis.

PSNR SSIM LPIPS

Appearance Loss 27.11 0.843 0.0519

+ Mask + Jacobian Loss 28.34 0.870 0.0460

+ Positional Encoding 28.49 0.868 0.0456

+ Multi-plane disparities 33.39 0.935 0.0242

reference view Jacobian has large disparity, the encoded ob-
jects are spatially close which enables high quality interpo-
lation.

3. Quantitative Results Dataset
In this section, we describe the steps to prepare the

quantiative evaluation dataset used in our paper. We nu-
merically compare our approach against the other meth-
ods on two lightfield video datasets, Sintel [3] and
LFVID [7]. Sintel dataset contains 23 9x9 lightfield
videos of 7 distinct scenes each with 20 to 50 frames.
Among these we selected 5 sequences from distinct scenes
that had larger number of frames (2 scenes contained
only short sequences): ambushfight 5, bamboo 1,
chickenrun 3, foggyrocks 1, as well as shaman 2.
We use every other frame of the sequences 05 00 and
05 08 as the input left and right videos and the sequence
05 04 as our ground truth. We center crop the images to
360p. The LFVID dataset contains 4× 4 light field videos,
from which, we select 6 scenes: Birthday, Hands,
Painter, Rugby, Theater and Train. We use every
other frame of the videos from views 0 and 2 (from the sec-
ond row) as our input and the video for view 1 as the ground
truth. We downsample all the images by a factor of 2 and
center crop them to 360p.

4. Ablation Experiments
Here, we evaluate the effectiveness of various compo-

nents in our model. We use the Painter scene from
LFVID [7] dataset for numerical ablations of view synthe-

Table 2. Effect of components on multi-plane disparity training.

PSNR SSIM LPIPS

w/o per plane regularization 28.41 0.892 0.0428

w/o disparity mask 31.48 0.924 0.0322

w/ pixel-wise sum 31.51 0.907 0.0316

w/ pixel-wise max (Ours) 33.39 0.935 0.0242

Table 3. Effect of number of planes on view synthesis.

#planes PSNR SSIM LPIPS

2 27.66 0.860 0.0437

3 30.72 0.927 0.0297

4 32.13 0.930 0.0266

6 33.39 0.935 0.0242

9 33.23 0.937 0.0235

Table 4. Effect of components on time interpolation.

PSNR SSIM LPIPS

Single Jacobian 32.88 0.954 0.0261

Dual Jacobian 33.12 0.954 0.0259

Non-Uniform coordinates 33.59 0.959 0.0235

sis. In Table 1, we show the effectiveness of core compo-
nents of view synthesis algorithm. The Jacobian loss with
masked appearance loss significantly improves the output
quality by applying occlusion aware training. Positional en-
coding improves the fine details of encoded Jacobians. Our
multi-plane approach drastically improves the output qual-
ity as it is able to handle scenes with large disparity.

We further explore the components of multi-plane dis-
parity approach in Table 2. Without the per plane regular-
ization, we see a drastic drop in performance highlighting
its importance. Training without the disparity mask nega-
tively affects the performance and creates sharp artifacts in
the output. Using the pixel-wise max operator over sum to
merge the planes gives a significant performance boost to
our model. In addition, we demonstrate the effect of these
components visually in Fig. 5. The first two rows show the
guidance Jacobians and disparity masks for per plane regu-
larization. The bottom four rows show the effect of multi-
plane disparity components. While all the configurations
are able to encode the guidance Jacobians (J(u1, ti)), the
intermediate Jacobian (J(u1.5, ti)) contains artifacts for all
the other configurations. Without per plane regularization,
the network tends to put most of the details in one plane
(Jd5(u1, ti)). Note that while a couple of other planes con-
tain content, they will be masked by the the fifth plane as
it contains maximum disparity in most pixels. This leads to
missing details in the intermediate Jacobian. Without dis-

2



ti - 1 ti ti + 1

Figure 3. Here, we demonstrate the non-linear motion that fre-
quently occurs in videos. The red dots show actual pixel motion at
different time steps. Using a single Jacobian value to encode pixel
motion to both left and right time steps results in averaging (blue
dot) which leads to ghosting artifacts.

parity mask, the network has no flexibility in encoding the
objects at different disparity. This ends up creating arti-
facts around plane boundaries (halo around the person) in
the intermediate Jacobian. Using the pixel-wise sum oper-
ator creates fuzzy intermediate Jacobian. Our configuration
with pixel-wise max operator creates detailed intermediate
Jacobian without any significant boundary artifacts.

In Table 3, we show the effect of number of planes on
the output quality. While the performance keeps improving
until 6 planes, we do not observe significant improvement
in performance beyond that. So, we choose #planes = 6
to maximize the view synthesis quality while limiting the
computation cost.

We use the CARS scene from our GoPro rig for numer-
ical ablations of time interpolation. Since we captured the
GoPro scenes at 240fps, we have ground truth frames for
this experiment. In Table 4, we look at the time interpo-
lation components of our model. Single Jacobian is un-
able to handle non-linear motion, as illustrated in Fig. 3.
Using dual Jacobian is able to improve the time interpo-
lation quality by handling small non-linear motion. Us-
ing non-uniform coordinates improves the performance by
a good margin as it allows the network to encode highly
non-linear motion and motion spikes. The effectiveness of
non-uniform coordinates becomes apparent in visual com-
parisons. E.g., every time there is sudden change in cam-
era or object motion in the supplementary video, X-Fields
will generate glaring artifacts while our approach is able to
smoothly handle them.

5. Results

5.1. Qualitative Results

We capture a set of stereo videos with a variety of mo-
tions using a stereo GoPro camera rig and Lume Pad [4]
(stereo rear cameras as shown in Fig. 1). The Lume Pad
videos are automatically time synchronized and rectified.
For the GoPro stereo videos, we time synchronize the left
and right videos using a high precision clock and synchro-
nizing the clock transitions as shown in Fig. 9. We then
perform uncalibrated stereo video rectification on the syn-
chronized stereo videos.

We show comparisons against several state-of-the art ap-
proaches. Fig. 7 shows videos captured using the GoPro
rig. The Lume Pad videos are shown in Fig. 8. For all the
scenes, we show view-time interpolation at the middle of
four observed view-time frames. As seen, other approaches
produce results with noticeable ghosting and other artifacts,
while our results are sharp and have clear boundaries.

We can also use video interpolation approaches like
FILM [6] and RIFE [1] for view synthesis. However, these
approaches tend to generate artifacts, as shown in Fig 6,
which leads to temporal inconsistency.
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Figure 4. This figure demonstrates the multi-plane disparity approach with a real example. The network uses 5 planes to encode the scene
disparity. You can see that the network learns to separate objects (gθ(uj , ti)) into separate planes (Jdk (uj , ti)) with similar texture. For
both views uj , the objects in each plane are close to each other which enables high quality interpolation. These planes are then shifted
(s(Jdk (uj , ti), dku)) and merged using pixel-wise max operation to obtain the final view Jacobian (J(uj , ti)).
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Figure 5. The top two rows consist of per plane guidance Jacobians (J̃dk (u1, ti)), disparity masks (Mdisp
k ), guidance Jacobian (J̃(u1, ti))

and the input reference frames (f(uj , ti)). The bottom four rows qualitatively demonstrate the effect of different components on multi-
plane disparity training. Note that all configurations are able to encode guidance Jacobians correctly (J(u1, ti)). However, the quality
of intermediate Jacobian used for view synthesis (J(u1.5, ti)) changes depending on the setting. Without per plane regularization (first
row), the network tends to encode all information in a single plane (Jd5(u1, ti)) which leads to loss of details in the intermediate Jacobian.
Without disparity mask (second row), the network has a hard constraint to exactly encode the per plane guidance Jacobians which leads
to artifacts around plane boundaries during view synthesis. Using sum operator to merge planes generates severe artifacts (third row) at
intermediate coordinates. Our approach with max operator (fourth row) is able to generate high quality intermediate Jacbians.
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Figure 6. Another approach to view-time synthesis would be to use a video interpolation model to perform both view and time synthesis.
However, without the constraint of static motion, these models tend to introduce artifacts that result in temporal inconsistency. E.g., while
FILM [6] is able to handle large motion, it sometimes deforms the texture to smoothly animate between the two views. Our approach is
able to correctly warp the texture. RIFE [1] on the other hand, while able to synthesize frames in real-time, struggles at motion boundaries.
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Figure 7. Comparison against several state-of-the-art methods on
view-time interpolation. On the left we show the overlayed left and
right views for two consecutive frames neighboring the coordinate
of interest.
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Figure 8. Comparison against several state-of-the-art view-time
interpolation methods on Lume Pad [4] scenes. On the left we
show the overlayed left and right views for two consecutive frames
neighboring the coordinate of interest.
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Figure 9. We observe the frames where the clock transitions to the next time stamp in both left and right frames. This transition is used to
synchronize the stereo videos to the closest frame.
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