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Supplementary Material

A. Model Architectures

We summarize the architectures of five Transformer
models adopted in the main paper, including PVT [11],
PVTv2 [12], Swin Transformer [8], CSwin Transformer [3],
NAT [4] in Tab.5-10. For fair comparison, we only substi-
tute the original self-attention blocks at early stages of the
baseline models with our proposed Slide Attention, while
the remaining blocks, training configurations, and model
structure (width and depth) are kept unchanged.

B. Dataset and Training Setup

ImageNet. ImageNet 2012 [2] comprises 1.28 million
training images and 50,000 validation images from 1000
different classes. For all baseline models, we follow the
training configurations in the original paper, with adamw
optimizer, 300 epoch training, and data augmentation set-
tings follow DeiT [10]. For CSwin-Transformer, we fol-
low the original setting and use exponential moving average
(EMA) [9] with the same ema decay rate.
COCO. COCO dataset [7] is a standard object detection
benchmark and we use a subset of 80k samples as training
set and 35k for validation. For all baseline models, we train
the network by adamw. Backbone networks are respectively
pretrained on ImageNet dataset following the same training
configurations in the original paper. We follow the ”1x”
learning schedule to train the whole network for 12 epochs
and divide the learning rate by 10 at the 8th and 11th epoch
respectively. For several models, we follow the configura-
tions in the original paper, and additionally experiment ”3x”
schedule with 36 epochs. We apply standard data augmen-
tation, that is resize, random flip and normalize. Learning
rate is set at 0.01 and linear warmup is used in the first 500
iterations. We follow the ”1x” learning schedule training the
whole network for 12 epochs and divide the learning rate
by 10 at the 8th and 11th epoch respectively. For several
transformer-based models, we follow the configurations in
the original paper, and test with ”3x” schedule. All mAP
results in the main paper are tested with input image size
(3, 1333, 800).
ADE20K. ADE20K [14] is a widely-used semantic seg-
mentation dataset, containing 150 categories. ADE20K has

25K images, with 20K for training, 2K for validation, and
another 3K for testing. For baseline models, we follow
the training configurations in their original paper respec-
tively. For Semantic FPN [5], we optimize the models using
AdamW with an initial learning rate of 1e-4 for 80k itera-
tions. For UperNet [13], we use the AdamW optimizer with
an initial learning rate of 6e-5 and a linear warmup of 1,500
iterations. Models are trained for a total of 160K iterations.
We randomly resize and crop the image to 512 × 512 for
training, and re-scale to have a shorter side of 512 pixels
during testing.

RetinaNet Object Detection on COCO (Sch. 1x)
Method FLOPs AP AP50 AP75 APs APm APl

PVT-T 221G 36.7 56.9 38.9 22.6 38.8 50.0
Slide-PVT-T 200G 40.1 61.1 42.2 25.9 43.3 54.2
PVT-S 286G 38.7 59.3 40.8 21.2 41.6 54.4
Slide-PVT-S 251G 42.4 63.9 45.0 26.8 45.6 56.9
PVT-M 373G 41.9 63.1 44.3 25.0 44.9 57.6
Slide-PVT-M 338G 43.5 64.7 46.1 26.3 47.1 58.5
PVTV2-B0 178G 37.2 57.2 39.5 23.1 40.4 49.7
Slide-PVTv2-B0 167G 37.6 57.9 40.1 22.9 40.4 50.2
PVTV2-B1 225G 41.2 61.9 43.9 25.4 44.5 54.3
Slide-PVTv2-B1 204G 41.5 62.3 44.0 26.0 44.8 54.9
PVTV2-B2 291G 44.6 65.6 47.6 27.4 48.8 58.6
Slide-PVTv2-B2 255G 45.0 66.2 48.4 28.8 48.8 59.7
PVTV2-B3 379G 45.9 66.8 49.3 28.6 49.8 61.4
Slide-PVTv2-B3 343G 46.8 67.7 50.3 30.5 51.1 61.6

Table 1. Results on COCO object detection with RetinaNet [6].
The FLOPs are computed over backbone, FPN, and detection head
with an input resolution of 1280×800.

C. Additional Downstream Experiments
We also provide additional experiment results on seman-

tic segmentation and object detection, and show in Tab.1,
Tab.3 and Tab.4. Similar pattern can be observed: (1)
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Method Params Flops Top-1
PVT-T [11] 13.2M 1.9G 75.1
Slide-PVT-T 12.2M 2.0G 78.0 (+2.9)

PVT-S 24.5M 3.8G 79.8
Slide-PVT-S 22.7M 4.0G 81.7 (+1.9)

PVT-M 44.2M 6.7G 81.2
Slide-PVT-M 42.5M 9.8G 82.9 (+1.7)

PVT-L 61.4M 6.7G 81.7
Slide-PVT-L 59.8M 9.8G 83.9 (+2.2)

PVTv2-B0 [12] 3.4M 0.6G 70.5
Slide-PVTv2-B0 3.3M 0.6G 71.4 (+0.9)

PVTv2-B1 13.1M 2.1G 78.7
Slide-PVTv2-B1 13.0M 2.2G 79.5 (+0.7)

PVTv2-B2 25.4M 4.0G 82.0
Slide-PVTv2-B2 22.8M 4.2G 82.7 (+0.7)

PVTv2-B3 45.2M 6.9G 83.2
Slide-PVTv2-B3 42.5M 7.1G 83.8 (+0.6)

PVTv2-B4 62.6 M 10.1G 83.6
Slide-PVTv2-B4 59.8M 10.3G 84.2 (+0.6)

PVTv2-B5 82.0M 11.8G 83.8
Slide-PVTv2-B5 78.9M 12.1G 84.3 (+0.5)

Swin-T [8] 29M 4.5G 81.3
Slide-Swin-T 29M 4.6G 82.3 (+1.0)

Swin-S 50M 8.7G 83.0
Slide-Swin-S 51M 8.9G 83.7 (+0.7)

Swin-B 88M 15.4G 83.5
Slide-Swin-B 89M 15.5G 84.2 (+0.7)

CSwin-T [3] 23M 4.3G 82.8
Slide-CSwin-T 23M 4.3G 83.2 (+0.4)

CSwin-S 35M 6.9G 83.6
Slide-CSwin-S 35M 6.9G 84.0 (+0.4)

CSwin-B 78M 15.0G 84.2
Slide-CSwin-B 78M 15.0G 84.7 (+0.5)

NAT-M [4] 20M 2.7G 81.8
Slide-NAT-M 20M 2.7G 82.4 (+0.6)

NAT-T 28M 4.3G 83.2
Slide-NAT-T 28M 4.3G 83.6 (+0.4)

NAT-S 51M 7.8G 83.7
Slide-NAT-S 51M 7.8G 84.3 (+0.6)

Table 2. Comparisons of slide attention with other vision
transformer backbones on FLOPs, parameters, accuracy on the
ImageNet-1K classification task.

Semantic Segmentation on ADE20K
Backbone Method FLOPs #Params mIoU mAcc
PVT-T S-FPN 158G 17M 36.57 46.72
Slide-PVT-T S-FPN 136G 16M 38.43 50.05
PVT-S S-FPN 225G 28M 41.95 53.02
Slide-PVT-S S-FPN 188G 26M 42.47 54.00
PVT-M S-FPN 315G 48M 42.91 53.80
Slide-PVT-M S-FPN 278G 46M 43.97 55.58
Swin-T UperNet 945G 60M 44.51 55.61
Slide-Swin-T UperNet 946G 60M 45.67 57.13
Swin-S UperNet 1038G 81M 47.64 58.78
Slide-Swin-S UperNet 1038G 81M 48.46 60.18
Swin-B UperNet 1188G 121M 48.13 59.13
Slide-Swin-B UperNet 1188G 121M 48.58 60.26

Table 3. Results of semantic segmentation. The FLOPs are com-
puted over encoders and decoders with an input image at the reso-
lution of 512×2048. S-FPN is short for SemanticFPN [5] model.

Our module achieves consistent improvements over base-
line models; (2) The improvements on small objects are
more significant, indicating the effectiveness of local induc-
tive bias in our slide attention module. We also test the run-
time for segmentation and detection on a RTX3090 GPU,
and show the results below. Similar to classification, our
method achieves a better trade-off than baselines.

(a) COCO Object Detection (b) ADE20K Semantic Segmentation

Figure 1. Runtime for object detection and segmentation.

D. Full Classification Results
Due to the page limit, we only present representative

ImageNet classification results in Figure 5 of main paper.
Here, we show the full classification results when adapting
our module on all model sizes of baseline models in Tab.2.

E. Ablation Study on the Window Size
We also conduct ablation studies on the window size of

our local attention, and show runtime-performance com-
parison on both iPhone 12 and RTX3090 GPU. Our ex-
periments are all based on Swin-Transformer-T and Swin-
Transformer-S, and only the self-attention modules in the



(a) iPhone 12 (b) GPU (RTX 3090)
Figure 2. Ablation study on the window size k. We show runtime comparison on iPhone 12 and RTX 3090 GPU.

(a) Mask R-CNN Object Detection & Instance Segmentation on COCO
Method FLOPs #Param Schedule APb APb

50 APb
75 APb

s APb
m APb

l APm APm
50 APm

75 APm
s APm

m APm
l

PVT-T 240G 33M 1x 36.7 59.2 39.3 21.6 39.2 49.0 35.1 56.7 37.3 19.5 37.4 48.5
Slide-PVT-T 219G 32M 1x 40.4 63.4 43.8 25.3 42.8 53.0 38.1 60.4 41.0 20.0 40.1 55.2
PVT-S 305G 44M 1x 40.4 62.9 43.8 22.9 43.0 55.4 37.8 60.1 40.3 20.4 40.3 53.6
Slide-PVT-S 269G 42M 1x 42.8 65.9 46.7 26.6 45.5 57.3 40.1 63.1 43.1 20.3 42.4 59.0
PVT-M 392G 64M 1x 42.0 64.4 45.6 24.4 44.9 57.9 39.0 61.6 42.1 21.3 42.0 55.2
Slide-PVT-M 357G 62M 1x 44.4 66.9 48.6 28.9 47.0 59.4 0.408 63.9 43.8 25.0 43.5 55.9
PVTv2-B0 196G 23M 1x 38.2 60.5 40.7 22.9 40.9 49.6 36.2 57.8 38.6 18.0 38.4 51.9
Slide-PVTv2-B0 185G 23M 1x 38.8 60.9 41.9 23.7 41.5 50.7 36.4 58.0 38.8 20.6 39.1 49.5
PVTv2-B1 244G 34M 1x 41.8 64.3 45.9 26.4 44.9 54.3 38.8 61.2 41.6 20.2 41.3 56.1
Slide-PVTv2-B1 222G 33M 1x 42.6 65.3 46.8 27.4 45.6 55.7 39.7 62.6 42.6 24.1 42.9 53.7
PVTv2-B2 309G 45M 1x 45.3 67.1 49.6 28.8 48.4 59.5 41.2 64.2 44.4 22.0 43.7 59.4
Slide-PVTv2-B2 274G 43M 1x 46.0 68.2 50.3 28.8 49.4 61.0 41.9 65.1 45.4 24.6 45.2 57.2
PVTv2-B3 397G 65M 1x 47.0 68.1 51.7 30.2 50.4 62.4 42.5 65.7 45.7 23.2 45.3 61.5
Slide-PVTv2-B3 362G 63M 1x 47.8 69.5 52.6 30.2 51.3 62.8 43.2 66.5 46.6 26.1 46.3 58.7
Swin-T 267G 48M 1x 43.7 66.6 47.7 28.5 47.0 57.3 39.8 63.3 42.7 24.2 43.1 54.6
Slide-Swin-T 268G 48M 1x 44.3 67.2 48.5 28.9 47.8 57.0 40.3 63.9 43.0 24.3 44.0 54.5
Swin-T 267G 48M 3x 46.0 68.1 50.3 31.2 49.2 60.1 41.6 65.1 44.9 25.9 45.1 56.9
Slide-Swin-T 268G 48M 3x 46.8 69.0 51.6 31.7 50.4 60.1 42.3 66.0 45.8 23.5 45.8 60.8

(b) Cascade Mask R-CNN Object Detection & Instance Segmentation on COCO
Method FLOPs #Param Schedule APb APb

50 APb
75 APb

s APb
m APb

l APm APm
50 APm

75 APm
s APm

m APm
l

Swin-T 745G 86M 1x 48.1 67.1 52.2 30.4 51.5 63.1 41.7 64.4 45.0 24.0 45.2 56.9
Slide-Swin-T 747G 86M 1x 48.6 67.7 52.7 32.1 52.2 63.5 41.9 65.0 45.2 23.2 45.3 60.9
Swin-T 745G 86M 3x 50.4 69.2 54.7 33.8 54.1 65.2 43.7 66.6 47.3 27.3 47.5 59.0
Slide-Swin-T 747G 86M 3x 51.1 69.8 55.4 35.2 54.4 65.8 44.3 67.4 48.0 28.0 48.0 59.2
Swin-S 838G 107M 3x 51.9 70.7 56.3 35.2 55.7 67.7 45.0 68.2 48.8 28.8 48.7 60.6
Slide-Swin-S 838G 107M 3x 52.5 71.3 57.2 35.6 56.1 68.0 45.4 68.9 49.6 29.1 49.2 60.6
Swin-B 981G 145M 3x 51.9 70.5 56.4 35.4 55.2 67.4 45.0 68.1 48.9 28.9 48.3 60.4
Slide-Swin-B 983G 145M 3x 52.7 71.2 57.2 37.0 56.1 68.0 45.5 68.8 49.6 30.1 48.8 60.9

Table 4. Results on COCO dataset. The FLOPs are computed over backbone, FPN and detection head with input resolution of 1280×800.



first two stages are substituted with slide attention. It can be
observed that increasing the window size brings marginal
improvements on the model performance while resulting in
huge increase on the inference time. Similar results are
also observed in other works like [1]. Therefore, we con-
sider using window size k = 3 for all the results shown
in the main paper. We see the ineffectiveness of increas-
ing window size as a future direction and where a better
performance-efficiency trade-off will be more valuable.

F. Limitations
As we have stated above, the increasing of window size

in slide attention only results in marginal improvements.
We believe a better performance-efficiency trade-off with
larger window size worth further investigation, and we see
this as an important future direction.
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stage output
Slide-PVT-T Slide-PVT-S Slide-PVT-M

Slide Attention PVT Block Slide Attention PVT Block Slide Attention PVT Block

res1 56× 56

Conv1×1, stride=4, 64, LN win 3×3

dim 64

head 1

×2 None

 win 3×3

dim 64

head 1

×3 None

 win 3×3

dim 64

head 1

×3 None

res2 28× 28

Conv1×1, stride=2, 128, LN win 3×3

dim 128

head 2

×2 None

 win 3×3

dim 128

head 2

×3 None

 win 3×3

dim 128

head 2

×3 None

res3 14× 14

Conv1×1, stride=2, 320, LN

None

 win 7×7

dim 256

head 5

×2 None

 win 7×7

dim 256

head 5

×6 None

 win 7×7

dim 256

head 5

×18

res4 7× 7

Conv1×1, stride=2, 512, LN

None

 win 7×7

dim 512

head 8

×2 None

 win 7×7

dim 512

head 8

×3 None

 win 7×7

dim 512

head 8

×3

Table 5. Architectures of Slide-PVT models.

stage output
Slide-PVTv2-B0 Slide-PVTv2-B1 Slide-PVTv2-B2

Slide Attention PVTv2 Block Slide Attention PVTv2 Block Slide Attention PVTv2 Block

res1 56× 56

Conv4×4, stride=4, 32, LN Conv4×4, stride=4, 64, LN win 3×3

dim 32

head 1

×2 None

 win 3×3

dim 64

head 1

×2 None

 win 3×3

dim 64

head 1

×3 None

res2 28× 28

Conv1×1, stride=2, 64, LN Conv1×1, stride=2, 128, LN win 3×3

dim 64

head 2

×2 None

 win 3×3

dim 128

head 2

×2 None

 win 3×3

dim 128

head 2

×3 None

res3 14× 14

Conv2×2, stride=2, 160, LN Conv2×2, stride=2, 320, LN

None

 win 7×7

dim 160

head 5

×2 None

 win 7×7

dim 320

head 5

×2

 win 3×3

dim 320

head 5

×2

 win 7×7

dim 320

head 5

×4

res4 7× 7

Conv2×2, stride=2, 256, LN Conv2×2, stride=2, 512, LN

None

 win 7×7

dim 512

head 8

×2 None

 win 7×7

dim 512

head 8

×2 None

 win 7×7

dim 512

head 8

×3

Table 6. Architectures of Slide-PVTv2 models (Part1).



stage output
Slide-PVTv2-B3 Slide-PVTv2-B4 Slide-PVTv2-B5

Slide Attention PVTv2 Block Slide Attention PVTv2 Block Slide Attention PVTv2 Block

res1 56× 56

Conv4×4, stride=4, 64, LN win 3×3

dim 64

head 1

×3 None

 win 3×3

dim 64

head 1

×2 None

 win 3×3

dim 64

head 1

×3 None

res2 28× 28

Conv2×2, stride=2, 128, LN win 3×3

dim 128

head 2

×3 None

 win 3×3

dim 128

head 2

×8 None

 win 3×3

dim 128

head 2

×6 None

res3 14× 14

Conv2×2, stride=2, 320, LN win 3×3

dim 320

head 5

×10

 win 7×7

dim 320

head 5

×8

 win 3×3

dim 320

head 5

×15

 win 7×7

dim 320

head 5

×12

 win 3×3

dim 320

head 5

×20

 win 7×7

dim 320

head 5

×20

res4 7× 7

Conv1×1, stride=2, 512, LN

None

 win 7×7

dim 512

head 8

×3 None

 win 7×7

dim 512

head 8

×2 None

 win 7×7

dim 512

head 8

×3

Table 7. Architectures of Slide-PVTv2 models (Part2).

stage output
Slide-Swin-T Slide-Swin-S Slide-Swin-B

Slide Attention Swin Block Slide Attention Swin Block Slide Attention Swin Block

res1 56× 56

concat 4× 4, 96, LN concat 4× 4, 96, LN concat 4× 4, 128, LN win 3×3

dim 96

head 3

×2 None

 win 3×3

dim 96

head 3

×2 None

 win 3×3

dim 128

head 3

×2 None

res2 28× 28

concat 4× 4, 192, LN concat 4× 4, 192, LN concat 4× 4, 256, LN win 3×3

dim 192

head 6

×2 None

 win 3×3

dim 192

head 6

×2 None

 win 3×3

dim 256

head 6

×2 None

res3 14× 14

concat 4× 4, 384, LN concat 4× 4, 384, LN concat 4× 4, 512, LN

None

 win 7×7

dim 384

head 12

×6 None

 win 7×7

dim 384

head 12

×18 None

 win 7×7

dim 512

head 12

×18

res4 7× 7

concat 4× 4, 768, LN concat 4× 4, 768, LN concat 4× 4, 1024, LN

None

 win 7×7

dim 768

head 24

×2 None

 win 7×7

dim 768

head 24

×2 None

 win 7×7

dim 1024

head 24

×2

Table 8. Architectures of Slide-Swin models.



stage output
Slide-CSwin-T Slide-CSwin-S Slide-CSwin-B

Slide Attention CSwin Block Slide Attention CSwin Block Slide Attention CSwin Block

res1 56× 56

Conv7×7, stride=4, 64, LN Conv7×7, stride=4, 96, LN win 3×3

dim 64

head 2

×1 None

 win 3×3

dim 64

head 2

×2 None

 win 3×3

dim 96

head 4

×2 None

res2 28× 28

Conv7×7, stride=4, 128, LN Conv7×7, stride=4, 192, LN win 3×3

dim 128

head 4

×2 None

 win 3×3

dim 128

head 4

×4 None

 win 3×3

dim 192

head 8

×4 None

res3 14× 14

Conv7×7, stride=4, 256, LN Conv7×7, stride=384, LN win 3×3

dim 256

head 8

×5

 win 7×7

dim 256

head 8

×16

 win 3×3

dim 256

head 8

×8

 win 7×7

dim 256

head 8

×24

 win 3×3

dim 384

head 16

×14

 win 7×7

dim 384

head 16

×18

res4 7× 7

Conv7×7, stride=4, 512, LN Conv7×7, stride=4, 768, LN

None

 win 7×7

dim 512

head 16

×1 None

 win 7×7

dim 512

head 16

×2 None

 win 7×7

dim 768

head 32

×2

Table 9. Architectures of Slide-CSwin models.

stage output
Slide-NAT-Mini Slide-NAT-Tiny Slide-NAT-Small

Slide Attention Swin Block Slide Attention Swin Block Slide Attention Swin Block

res1 56× 56

2 * Conv3×3, stride=2, 64, LN 2 * Conv3×3, stride=2, 96, LN win 3×3

dim 64

head 2

×3 None

 win 3×3

dim 64

head 2

×3 None

 win 3×3

dim 96

head 3

×3 None

res2 28× 28

Conv3×3, stride=2, 128, LN Conv3×3, stride=2, 192, LN win 3×3

dim 128

head 4

×4 None

 win 3×3

dim 128

head 4

×4 None

 win 3×3

dim 192

head 6

×4 None

res3 14× 14

Conv3×3, stride=2, 256, LN Conv3×3, stride=2, 384, LN

None

 win 7×7

dim 256

head 8

×6

 win 3×3

dim 256

head 8

×10

 win 7×7

dim 256

head 8

×8

 win 3×3

dim 384

head 12

×10

 win 7×7

dim 384

head 12

×8

res4 7× 7

Conv3×3, stride=2, 512, LN Conv3×3, stride=2, 768, LN

None

 win 7×7

dim 512

head 16

×5 None

 win 7×7

dim 512

head 16

×5 None

 win 7×7

dim 768

head 24

×5

Table 10. Architectures of Slide-NAT models.


