
Supplementary Material for Stitchable Neural Networks

Zizheng Pan Jianfei Cai Bohan Zhuang†

ZIP Lab, Monash University

https://snnet.github.io

We organize our supplementary material as follows.

• In Section A, we provide further explanation of the
proposed nearest stitching strategy.

• In Section B, we study the effect of different sizes and
strides of sliding windows for stitching.

• In Section C, we study the effect of different training
epochs.

• In Section D, we show the effectiveness of our training
strategy by comparing with sandwich sampling rule
and inplace distillation [7].

• In Section E, we discuss the effect of training without
the pretrained weights of anchors.

• In Section F, we experiment with different number of
samples for initializing stitching layers.

• In Section G, we provide additional discussion with
One-shot NAS.

• In Section H, we compare SN-Net with LayerDrop [1]
at inference time.

A. Detailed Illustration of Nearest Stitching
Strategy

In the proposed SN-Net, we introduce a nearest stitching
strategy which limits the stitching between two anchors of
the nearest complexity/performance. In Figure A, we de-
scribe more details for this approach based on DeiT [6].
Under the nearest stitching, we limit the stitches to two
types: Ti-S and S-B, which connects DeiT-Ti/S and DeiT-
S/B, respectively. Experiments in the main manuscript
have shown that stitching anchors with a larger complex-
ity/performance gap or sequentially stitching more than two
anchors achieves inferior performance.

†Corresponding author. E-mail: bohan.zhuang@gmail.com

B. Effect of Different Sizes and Strides of Slid-
ing Windows

We explore different settings of sliding windows in SN-
Net. In Figure B, we visualize the results of using different
kernel sizes and strides in stitching DeiT models. Over-
all, different settings can produce a different number of
stitches but achieve similar good performance. However,
it is worth noting that within a larger window, a stitching
layer needs to map activations with more dissimilar repre-
sentations, which potentially results in some bad-performed
stitches, as shown in the case of k = 4, s = 4 in Figure B.

C. Effect of Different Training Epochs
In our default setting, we train DeiT-based SN-Net with

50 epochs. In Figure C, we show that even with only 15
epochs, many stitches in SN-Net still perform favorably.
With more training epochs, we observe consistent perfor-
mance gain for all stitches, especially for those close to the
smaller anchors, e.g. stitches around DeiT-Ti and DeiT-S.
This is also reasonable as these stitches perform badly at
the very beginning, thus particularly requiring more train-
ing time to obtain good performance.

D. Effect of Training Strategy
To train SN-Net, we adopt a simple training strategy by

randomly sampling a stitch at each training iteration and us-
ing simple distillation for all stitches with a typical teacher
(e.g., RegNetY-160 [5]). To show the effectiveness of this
strategy, we conduct experiments by training SN-Net with
sandwich sampling rule and inplace distillation [7], which
is a common practice for training supernets in NAS [3,4,8].
Specifically, we simultaneously sample one stitch and its
connected pair of anchors at each training iteration. At
the same time, we use the larger anchor as the teacher to
guide the smaller anchor and the sampled stitch. However,
as shown in Figure D, this approach mainly improves the
smaller anchors (i.e., DeiT-Ti/S) while most stitches can-
not outperform those under our training strategy. It is also
worth noting that the sandwich rule requires intensive mem-
ory/time cost due to training multiple networks at one train-

1



Stitching
Layer

DeiT-S
Head

(a) Ti-S

...

...

Stitching
Layer

DeiT-B
Head

Head

DeiT-Ti
Head

...

...

(b) S-B

Stitching
Layer

...
DeiT-Ti

Head

DeiT-B
Head...

(c) Ti-B

...
DeiT-Ti

Head

(d) Ti-S-B

Stitching
Layer

Stitching
Layer

DeiT-B
Head

Head...

...

DeiT-SDeiT-S
...

Figure A. Four types of stitches based on DeiT-Ti/S/B. Under the proposed nearest stitching strategy, we limit the stitching between two
anchors of the nearest model complexity/performance, i.e., Figure (a) and (b), while excluding stitching anchors with a larger complex-
ity/performance gap (Figure (c)) or sequentially stitching more than two anchors (Figure (d)).

5 10 15
FLOPs (G)

70.0

72.5

75.0

77.5

80.0

82.5

To
p-

1(
%

)

DeiT-Ti

DeiT-S
DeiT-B

k=2, s=2

5 10 15
FLOPs (G)

70.0

72.5

75.0

77.5

80.0

82.5

To
p-

1(
%

)

DeiT-Ti

DeiT-S
DeiT-B

k=3, s=3

5 10 15
FLOPs (G)

70.0

72.5

75.0

77.5

80.0

82.5

To
p-

1(
%

)
DeiT-Ti

DeiT-S

DeiT-B

k=4, s=4

Figure B. Effect of different sizes of sliding windows. k and s refer to the kernel size and stride for controlling the sliding windows. From
left to right, the kernel sizes and strides of 2, 3 and 4 produce 51, 75 and 99 stitches, respectively.

2.5 5.0 7.5 10.0 12.5 15.0 17.5
FLOPs (G)

70

72

74

76

78

80

82

To
p-

1(
%

)

DeiT-Ti

DeiT-S
DeiT-B

15 Epochs

30 Epochs

50 Epochs

100 Epochs

Figure C. Effect of different training epochs.

ing iteration. In contrast, ours requires a similar training
cost for each training iteration as a normal network train-
ing [6].

E. Training without Pretrained Weights
The foundation of SN-Net is based on the pretrained

model families in the large-scale model zoo. Without the

2.5 5.0 7.5 10.0 12.5 15.0 17.5
FLOPs (G)

70

72

74

76

78

80

82

To
p-

1(
%

)

DeiT-Ti

DeiT-S

DeiT-B

Random + Simple Distill (Ours)

Sandwich + Inplace Distill

Figure D. Comparison between our training strategy and common
supernet training strategy in NAS (i.e., sandwich sampling rule
and inplace distillation [7]).

pretrained weights of anchors, we find SN-Net failed to
converge (training failed within 10 epochs based on the de-
fault experiment settings of DeiT), which aligns with our as-
sumption that pretrained anchors help to reduce many train-
ing difficulties, such as the interference among stitches.



2.5 5.0 7.5 10.0 12.5 15.0 17.5
FLOPs (G)

70

72

74

76

78

80

82

To
p-

1(
%

)

DeiT-Ti

DeiT-S

DeiT-B

0 Samples

50 Samples

100 Samples

200 Samples

Figure E. Effect of different number of samples for initializing
stitching layers. With 0 samples, the initialization is equivalent to
the default Kaiming initialization in PyTorch.

F. Effect of Different Number of Samples for
Initializing Stitching Layers

By default, we randomly sample 100 training images to
initialize the stitching layers in SN-Net. To explore the ef-
fect of different number of samples for initialization, we
train DeiT-based SN-Net by using 50, 100 and 200 training
images on ImageNet with the same 50 epochs of training.
As shown in Figure E, although all settings achieve better
performance than the default Kaiming initialization in Py-
Torch, we find that using more samples does not bring more
performance gain. Besides, since solving the least-squares
solution with more samples can increase the memory cost
at the beginning of training, we set the default number of
samples for initializing stitching layers to 100 to avoid the
potential “out of memory” issue.

G. Compared with One-shot NAS

As discussed earlier, SN-Net is fundamentally differ-
ent from one-shot NAS. Specifically, one-shot NAS trains
a supernet from scratch and searches for an optimal sub-
network during deployment to meet a specific resource
constraint with complicated techniques (e.g., evolutionary
search) and expensive cost (e.g., > 2K GPU hours in [8]).
In contrast, SN-Net aims to cheaply and fast assemble pre-
trained model families (e.g., ∼110 GPU hours) to get a scal-
able network, and instantly select optimal stitches due to the
interpolation effect. In our experiments, we use DeiTs and
Swins as two examples to show that SN-Net is a univer-
sal framework. Besides, we show in Figure F that we eas-
ily achieve comparable performance with BigNASModel-
XL [8] (80.7% vs. 80.9%) with lower FLOPs (977M vs.
1040M) by stitching LeViTs [2].

700 800 900 1000 1100
FLOPs (M)

79.75

80.00

80.25

80.50

80.75

81.00

977M, 80.7%

81.25

To
p-

1(
%

)

LeViT-192

LeViT-256

Figure F. Stitching LeViT-192 and LeViT-256

H. Compared with LayerDrop at Inference
Time

LayerDrop [1] is a form of structured dropout which ran-
domly drops Transformer layers during training for regu-
larization. It also facilitates efficient pruning by dropping
some layers at inference time. In DeiT-based SN-Net, the
anchors are already pretrained with a drop rate of 0.1. To
show the advantage of our method, we train DeiT-B (i.e., the
largest model in DeiT family) with a more aggressive path
drop rate (0.5) and achieve 81.4% Top-1 accuracy on Ima-
geNet. However, cropping some layers of this trained net-
work during testing performs badly, e.g., throwing the first
6 blocks (achieving 0.2%), the last 6 blocks (52.7%), and
every other (72.7% with 8.9G FLOPs), while our method
achieves 72.6% with 2.1G FLOPs.

References
[1] Angela Fan, Edouard Grave, and Armand Joulin. Reducing

transformer depth on demand with structured dropout. In
ICLR, 2020. 1, 3

[2] Benjamin Graham, Alaaeldin El-Nouby, Hugo Touvron,
Pierre Stock, Armand Joulin, Hervé Jégou, and Matthijs
Douze. Levit: a vision transformer in convnet’s clothing for
faster inference. In ICCV, pages 12259–12269, 2021. 3

[3] Changlin Li, Guangrun Wang, Bing Wang, Xiaodan Liang,
Zhihui Li, and Xiaojun Chang. Dynamic slimmable network.
In CVPR, pages 8607–8617, June 2021. 1

[4] Huaijin Pi, Huiyu Wang, Yingwei Li, Zizhang Li, and Alan L.
Yuille. Searching for trionet: Combining convolution with
local and global self-attention. In BMVC, page 141, 2021. 1

[5] Ilija Radosavovic, Raj Prateek Kosaraju, Ross B. Girshick,
Kaiming He, and Piotr Dollár. Designing network design
spaces. In CVPR, pages 10425–10433, 2020. 1

[6] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco
Massa, Alexandre Sablayrolles, and Hervé Jégou. Training
data-efficient image transformers & distillation through atten-
tion. In ICML, pages 10347–10357, 2021. 1, 2



[7] Jiahui Yu and Thomas S. Huang. Universally slimmable net-
works and improved training techniques. In ICCV, pages
1803–1811, 2019. 1, 2

[8] Jiahui Yu, Pengchong Jin, Hanxiao Liu, Gabriel Bender,
Pieter-Jan Kindermans, Mingxing Tan, Thomas S. Huang, Xi-
aodan Song, Ruoming Pang, and Quoc Le. Bignas: Scaling
up neural architecture search with big single-stage models. In
ECCV, pages 702–717, 2020. 1, 3


