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This supplementary material is organized as follows:
Sec. 1 describes the practical issues we encountered with
the downloaded Internet models, mentioned in Sec. 3 of
the main paper. Sec. 2 shows mean and maximum Dense
Correspondence Re-Projection Error (DCRE) plots for both
versions of the ground truth (cf. Sec. 5 of the main paper).
Sec. 3 describes in detail the setup of the experiments on
the evaluation of geometric fidelity. It shows extended re-
sults from Sec. 5 of the main paper for both the experiment
with the database of real images and the database images
rendered from a stretched 3D model. Sec. 4 presents exper-
iment on the influence of simplification of model geometry
and appearance on localization accuracy.

1. Issues with the Internet Models

In this section, we describe the practical issues we en-
countered when collecting the models described in Sec. 3
in the main paper. For convenience we replicate the Tab. 1
from the main paper in Tab. 1 and the individual scenes
from Fig. 2 from the original paper in Fig. 14 (Notre Dame),
Fig. 15 (Pantheon), Fig. 16 (Reichstag), Fig. 17 (St. Peter’s
Square), Fig. 18 (St. Vitus Cathedral) and Fig. 19 (Aachen).

All models downloaded from 3D Warehouse were cre-
ated using the SketchUp 3D modeling software. The soft-
ware allows mesh faces to have a material (color or texture)
from both sides. Other formats, e.g., Wavefront OBJ, are
not able to represent the double-sided textures, and there-
fore the texture of the face’s back side is lost during the for-
mat conversion. The problem can be prevented during mod-
eling time by orienting the front side of the faces outwards
from the model and assigning the texture only to those. This
is considered good practice in the SketchUp community;
however a large fraction of the models we downloaded did
not follow it. The same problem prevented us from extract-
ing textures from Reichstag model F and St. Peters Square
model D.
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Few other models (Pantheon C and D) contained generic
textures, which did not correspond to reality (see Fig. 1).
Therefore we decided to use just the raw geometry of these
models.

2. Localization Accuracy with Internet Models
and Used Metrics

Sec. 5 of the main paper focused on showing results for
the mean Dense Correspondence Re-Projection Error (mean
DCRE) for both the global alignment (GA) and local re-
finement (LR) versions of the ground truth. For maximum
DCRE results, Sec. 5 pointed to the supplementary material.
These results will be presented in this section. For conve-
nience and to facilitate easier comparisons, the following
shows results obtained using the MeshLoc pipeline [8] for
both possible DCRE aggregation functions (mean and max-
imum) and both ground truth methods (global alignment
(GA) and local refinement (LR)) (c¢f. Sec. 4 of the main
paper). We replicate the first row of Fig. 4 from the main
paper, which shows the experiments with mean DCRE ag-
gregation and global alignment (GA) ground truth in Fig. 4,
and the second row of Fig. 4 of the main paper, which shows
mean DCRE and local refinement (LR), in Fig. 6. Fig. 5
shows max DCRE and global alignment (GA) results. Fig. 7
shows max DCRE and local refinement (LR) results.

Regarding the difference between mean DCRE and max-
imum DCRE curves, we can observe two types of behavior.
For the first type, the maximum DCRE does not alter much
from the mean DCRE curve (e.g., Notre Dame A, B, and
E). For the second type, the drop is much more significant
(e.g., Notre Dame C, D). The first type corresponds to the
models with more accurate geometry (see Fig. 3 in the main
paper).

Naturally, measuring the maximum instead of the mean
DCRE per image leads to lower performance. Still, the



(a) The real state of the landmark (b) Pantheon - model C (c) Pantheon - model D

Figure 1. Comparison of the real state of the Pantheon landmark to models containing generic textures.
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(a) Stretching model width (120%) (b) Stretching model height (120%) (c) Stretching model depth (120%)

Figure 2. Visualization of the non-uniform scaling used for the evaluation of the impact of geometric fidelity. Original model in blue,
scaled model in red.

Scene ID  Model author Model source License Model type  Color type  Size [MB]
A Miguel Bandera  Sketchfab (https://skfb.ly/60Wu7) CCBY-NC-SA4.0 MVS texture 224

Notre Dame B Chigirinsky Sketchfab (https://skfb.1ly/6RnoM) CCBY 4.0 CAD texture 4.8
(Front Facade) C  Alejandro Diaz Sketchfab (https://skfb.ly/31dba) CCBY 4.0 CAD texture 3.1
16,7,13] D  Little-Goomba 3D Warehouse (https://bit.1ly/30WeOxY) 3DW: GML CAD texture 0.6
v E MiniWorld3D MyMiniWorld (https://mmf.i0/0/91899) BY-ND-NC-EX CAD raw 30.4
189 queries F  giotis 3D Warehouse (https://bit.1ly/300T041) 3DW: GML CAD raw 0.7
G Jul 3D Warehouse (https://bit.1ly/3Thrhot) 3DW: GML CAD raw 0.1

Panth Exteri A Fovea Sketchfab (https://skfb.ly/6RZHt) CCBY 4.0 MVS texture 84.2
antheon (Exterior) B brnipon 3D Warehouse (ht tps://bit .ly/3CCwTwP) 3DW: GML CAD texture 55
[6,7,13] C  Ultima Ratio 3D Warehouse (https://bit.1ly/3AuN2BK) 3DW: GML CAD raw 61.5
141 queries D  Adsman007 3D Warehouse (https://bit.1ly/3ASv10b) 3DW: GML CAD raw 24.5
E  Emanuele Viani  Sketchfab (https://skfb.ly/EAKB) CCBY 4.0 CAD raw 36.0

A Emperor Heer 99 3D Warehouse (https://bit.ly/3wzFhci) 3DW: GML CAD texture 13.3

Reichstag B Emperor Heer 99 3D Warehouse (https://bit.1ly/3ATX2Wk) 3DW: GML CAD texture 7.5
[6,7,13] C  Emperor Heer 99 3D Warehouse (https://bit.1ly/3ASdFSr) 3DW: GML CAD texture 273
T D Emperor Heer 99 3D Warehouse (https://bit.1ly/3ctJIvvp) 3DW: GML CAD texture 6.0
75 queries E KlausT. 3D Warehouse (https://bit.1y/3cme5qv) 3DW: GML CAD raw 53
F SH 3D Warehouse (https://bit.1ly/3AP4CBM) 3DW: GML CAD raw 0.1

St. Peter’s Square A Brian Trepanier Sketchfab (https://skfb.ly/or8Ip) CCBY 4.0 MVS texture 230.1
16,7,13] B Dounia B. 3D Warehouse (https://bit.1ly/3CCAYkk) 3DW:GML CAD texture 131.5
> C  mstochl 3D Warehouse (https://bit.ly/3RhgEmc) 3DW: GML CAD texture 4.2
126 queries D  Antonino G. 3D Warehouse (https://bit.ly/3Rd3KMC) 3DW: GML CAD raw 24.5
St. Vitus Cathedral A Brian Trepanier Sketchfab (https://skfb.1ly/08n8D) CCBY 4.0 MVS texture 109.4
(own data) B Brian Trepanier Sketchfab (https://skfb.1ly/08n8D) CCBY 4.0 MVS texture 284.9
. C  Pera 3D Warehouse (https://bit.1ly/3Tf7Bum) 3DW: GML CAD texture 3.7

213 queries D  Hrusak 3D Warchouse (Wt tps://bit.1ly/3Rja6tJ) 3DW: GML CAD texture 1.0
Aachen [10,11,14], 1015 queries A [5] - CCBY-NC-SA 40 CAD texture 21.6

Table 1. We show Tab. 1 from the main paper for convenience. List of scenes and 3D models used for the evaluation. The query images for
the scenes were obtained from the Image Matching Challenge (IMC) 2021 [6, 7, 13], the Aachen Day-Night v1.1 dataset [10, 11, 14], and
our own recordings. We distinguish between models directly created from images via MVS and models created from human input (CAD).
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Figure 3. Renderings of the simplified Notre Dame A model. The first column contains renderings of the original model. All other columns

correspond to models with reduced geometric and / or texture detail.

relative ranking between different models is mostly pre-
served, especially for more accurate poses with a mean /
max. DCRE of 15% of the image diagonal or smaller.

3. Isolating the Impact of Geometric Fidelity

To isolate the impact of geometric fidelity on localization
performance, we experimented with changing the geometry
used in the MeshLoc pipeline while fixing the appearance.
To this end, we matched each query image against other real
images (cf. Sec. 5 of the main paper). Both image retrieval
with AP-GeM [4, 9] descriptors and local feature matching
is done using a database of real images. Renderings of the
different 3D models are only used to obtain the depth maps
used by MeshLoc [§] to establish 2D-3D matches.

All IMC (Image Matching Challenge) 2021 [6, 7, 13]
scenes, except Reichstag, contain a large number of images,
from which we use only a small part as queries (c¢f. Tab. 1
for the resulting sizes of the query subsets). The rest of the
images were used as an image database in this experiment.
For Notre Dame and St. Peters Square, we use every 20th
image as a query, for Pantheon every 10th, and for St. Vitus
Cathedral every 4th. The Reichstag scene contains only 75
images; therefore, we decided to use all of them as queries
and performed the experiment in a leave-one-out manner,

i.e., when localizing one of the images, we used all the other
queries as the image database.

We show the results with mean DCRE and global align-
ment (GA) ground truth in Fig. 8 (which is a reproduction
of Fig. 6 from the main paper) and with local refinement
(LR) in Fig. 10. We also show maximum DCREs with GA
in Fig. 9 and with LR in Fig. 11. Tab. 1 associates the model
IDs to the individual models.

Compared to the results presented in Sec. 2, the gap be-
tween the mean and maximum DCRE curves is significantly
smaller when matching against real images and only using
the 3D geometry of the Internet models (in the form of ren-
dered depth maps). As already mentioned in the main pa-
per, the results show that finding sufficiently many matches
to facilitate accurate pose estimation seems to be the main
bottleneck, even if the underlying geometry is rather coarse.
Thus, we can attribute the majority of the outliers skewing
the maximum DCRE curves shown in Sec. 2 to the feature
matching stage.

To directly observe the influence of the geometric fi-
delity, we further experimented with non-uniformly scal-
ing the most precise model (Notre Dame A) to measure the
impact of a changing aspect ratio on localization accuracy.
The non-uniform scaling in width and height was done rel-
ative to the center of the model bounding box. The scal-



ing in depth direction had a center in the main plane of the
building’s front facade (see Fig. 2 for visualization). Fig. 12
extends the results from Fig. 7 in the main paper by using
intermediate scaling factors. The main conclusion drawn
in the paper, that changing the aspect ratio significantly re-
duces localization accuracy, remains valid.

4. Ablation Study: Simplifying the Represen-
tation

To better understand the influence of the level of geo-
metric and visual fidelity on localization accuracy, we ex-
periment with reducing the geometric resolution (number
of faces) and texture resolution of the Notre Dame A model
already used in the main paper for ablation studies.

We used Quadric Mesh Collapse Decimation algo-
rithm [2, 3], implemented in MeshLab [1], for geometry
simplification. Note that even when we use the version
of the algorithm that is supposed to be more suitable for
meshes with textures [3], the textures are significantly dis-
torted during the simplification. Therefore, the appearance
fidelity is not completely isolated from the geometric sim-
plification. The other way around, the reduction of texture
resolution does not influence the geometry of the model.
The texture simplification was done by downsampling all
the texture files in the model. We also combined the mod-
els with the simplified geometry with the downsampled tex-
tures at the same simplification ratio, e.g., the model with
half the number of the original faces is combined with the
textures with half the original width and height.

The renderings of the simplified models are shown in
Fig. 3. Note the distortion of the texture present in the mod-
els with higher levels of geometry simplification. We did
not observe such artifacts in models available on the Inter-
net. As such, the results obtained for these severe distor-
tions are not indicative of real-world performance.

The localization results of the MeshLoc [8] pipeline with
LoFTR [12] are show in Fig. 13. The localization method
uses both the rendered images and depth maps. The lo-
calization pipeline copes surprisingly well, even with very
high levels of geometric and appearance simplification. We
can see a major drop in accuracy only after the combina-
tion of simplified geometry and downsampled texture at a
very high simplification ratio of 1/16. Note that the simpli-
fied model is significantly more compact than the original
one (18.4 MB original vs. 0.7 MB at 1/16 ratio), which
suggests a potential use of the simplified meshes as very
compact scene representations.

Note that the experiment was done using a MVS mesh
reconstructed from images. Automatically simplifying the
geometry of manually created CAD models can result in
a complete collapse of the model geometry even for very
low simplification ratios, as the CAD models are often com-
posed of a small number of planar walls.
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Figure 9. Isolating the impact of geometric fidelity by combining real images with geometry from the Internet models. We show cumulative
histograms of the maximum DCRE, as a percentage of the image diagonal, over all query images in a scene for the ground truth poses
obtained via global alignment (GA).
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Figure 10. Isolating the impact of geometric fidelity by combining real images with geometry from the Internet models. We show

cumulative histograms of the mean DCRE, as a percentage of the image diagonal, over all query images in a scene for the ground truth
poses obtained via local refinement (LR).

11



Max. DCRE - LR Max. DCRE - LR

A
e B
s C
—_ D
9
E ——
g —F
a
o - G
(9]
3
(73]
mmmm | OFTR
204 i = =1 P2P+SG
| ‘ == 1 SG
! 1
E
o ]
(a) Notre Dame (b) Pantheon
Max. DCRE - LR
100
80
X 601
g
o
o
Q
o
Y 401
(2]
20
O-
0 5 10 15 20 25 30 0 5 10 15 20 25 30 O 5 10 15 20 25 30
error [%] error [%] error [%]
(c) Reichstag (d) St. Peter’s square (e) St. Vitus

Figure 11. Isolating the impact of geometric fidelity by combining real images with geometry from the Internet models. We show
cumulative histograms of the maximum DCRE, as a percentage of the image diagonal, over all query images in a scene for the ground truth
poses obtained via local refinement (LR).
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Figure 12. Results from Fig. 7 in the main paper, using more intermediate scaling steps. Isolating the impact of geometric fidelity
by applying non-uniform scaling on the 3D model. We show cumulative histograms of the mean DCRE, as a percentage of the image
diagonal, over all query images in a scene for the ground truth poses obtained via global alignment (GA).
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Figure 13. Localization performance of MeshLoc [8] using LoFTR when reducing the geometric and / or texture resolution of the Notre
Dame A model.
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Figure 14. Enlarged Notre Dame models from Fig. 2 in the main paper.
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Figure 15. Enlarged Pantheon models from Fig. 2 in the main paper.

Figure 16. Enlarged Reichstag models from Fig. 2 in the main paper.
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Figure 17. Enlarged St. Peter’s Square models from Fig. 2 in the main paper.

Figure 18. Enlarged St. Vitus Cathedral models from Fig. 2 in the main paper.
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Figure 19. Enlarged Aachen models from Fig. 2 in the main paper.
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