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A. Algorithm
Here, we provide the pseudo-code of the proposed TriCC

in Algo. 1. mm and sm denote the matrix multiplication
and softmax functions respectively. We do not mention the
super-pixel process (see Appendix. E) in the algorithm for
concise and clarity.

B. Details of Downstream Tasks’ Training
B.1. Fine-tuning Details of Semantic Segmentation

B.1.1 nuScenes

We use pre-trained MinkUNet [8] and VoxelNet [20]
as backbones to perform semantic segmentation on
nuScenes [4]. The pre-training details are presented in Sec.
4. A linear classification head is added to the end of the
backbone to build the segmentation model. For downstream
fine-tuning, we use SGD as our optimizer with a batch size
of 16, momentum of 0.9, dampening of 0.1, and a cosine
learning rate scheduler. The backbone and head are trained
with different learning rates for better transfer performance.
The learning rate for backbone is selected from [0.005,
0.01, 0.02, 0.04] and the learning rate for classification head
is 100 times greater than the former. The weight decay is
chosen from [0.001, 0.0005, 10−4, 10−5]. We use the com-
bination of the cross-entropy and lovász [3] as the loss func-
tion. Augmentations composed of rotation and flipping axis
are also performed on point clouds like pre-training. The
batchnorm momentum is set to 0.02. The voxel size and
point cloud range are the same as the pre-training settings.

B.1.2 SemanticKITTI

We also use the pre-trained MinkUNet and VoxelNet
as backbones to perform semantic segmentation on Se-
manticKITTI [2]. The pre-training details are the same as
nuScenes and the fine-tuning details are almost identical to
nuScenes except we use a different setting of the classifica-
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tion head’s learning rate. Here, the learning rate for classi-
fication head is 40 times greater than the backbone.

B.2. Fine-tuning Details of 3D Object Detection

B.2.1 KITTI

We use pre-trained MinkUNet and VoxelNet as backbones
to perform 3D object detection on KITTI [9]. We adopt
the well-known OpenPCDet 1 codebase and follow its de-
fault model settings. For PointRCNN [15], we replace its
3d backbone to MinkUNet and set other parameters by de-
fault. The learning rate is selected from [0.0025, 0.005,
0.01] and weight decay is chosen from [0.01, 0.03]. For
VoxelNet, we utilize it as the backbone of PV-RCNN [14]
and SECOND [17] detection algorithms and follow the de-
fault setting in OpenPCDet. In PV-RCNN, the learning rate
is selected from [0.0025, 0.005, 0.01] and weight decay is
chosen from [0.002, 0.01, 0.05]. In SECOND, the learn-
ing rate is selected from [0.0015, 0.003, 0.006] and weight
decay is chosen from [0.002, 0.01, 0.05].

B.2.2 nuScenes

On nuScenes, we use VoxelNet as the backbone to perform
3D object detection. We follow OpenPCDet’s model set-
tings except learning rate, weight decay, and training epoch.
We adopt CenterPoint [19] with voxel size of 0.1 meters
and SECOND as our detection algorithms. In CenterPoint,
the learning rate is selected from [0.0015, 0.005, 0.003]
and weight decay is chosen from [0.002, 0.01, 0.05]. In
SECOND, the learning rate is selected from [0.0015, 0.003,
0.006] and weight decay is chosen from [0.002, 0.01, 0.05].
All the models are fine-tuned for 30 epochs.

C. Augmentation Details
Augmentation is important for discriminative unsuper-

vised methods to get diverse pairs and learn effective repre-
sentations. We adopt two groups of augmentation for point
clouds and images respectively following SLidR [13].

1https://github.com/open-mmlab/OpenPCDet
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Algorithm 1 Pseudocode of TriCC in a PyTorch-like style.

# fp, fc: Backbone networks for point clouds and
camera images

# gc, hc, gp, hp: Projection heads for consistent
contraint and contrast

# aug_p, aug_c: Augmentations for point clouds and
images

# t: Temperature

for x_p1, x_p2, x_c, cr in loader: # get a minibatch

# random augmentation
x_p1 = aug_p(x_p1) # for point cloud in time t
x_p2 = aug_p(x_p2) # for point cloud in time t+1
x_c = aug_c(x_c) # for image in time t

# forward to get features for constraint
Pg1, Pg2 = gp(fp(x_p1)), gp(fp(x_p2))
Cg = gc(fc(x_c).detach())
# forward to get features for contrast
Ph1, Ph2 = hp(fp(x_p1)), hp(fp(x_p2))
Ch = hc(fc(x_c).detach())

# norm
Pg1, Pg2, Cg = norm(Pg1), norm(Pg2), norm(Cg)
Ph1, Ph2, Ch = norm(Ph1), norm(Ph2), norm(Ch)

# get constraint losses
ls = constraint((Pg1, Pg2, Cg), cr)
l_shortcut = constraint((Pg1, Pg2))

# get contrast loss
lc = contrast(Ph1, Ph2, Ch, Pg1, Pg2, Cg, cr))

loss = ls + l_shortcut +lc

# SGD update
loss.backward()
update(fp, fc, gc, hc, gp, hp)

def constraint(feat_g, calib_relation=None):
# get transition matrices
m = []
n_f = len(feat_g)
for i in range(n_f):
m.append(sm(mm(feat_g[i], feat_g[(i+1)%n_f])/t))

if calib_relation != None:
m[-1] = calib_relation

# get self-cycle
s = m[0]
for i in range(1, len(m)):
s = mm(s, m[i])

loss = crossEntropy(log(s), I)
return loss

def contrast(Ph1, Ph2, Ch, Pg1, Pg2, Cg, calib_rel=
None):

# get matching relations
m_cp2 = mm(Cg, Pg2.T)
m_pp = mm(Pg2, Pg1.T)
m_p1c = calib_rel if calib_rel else mm(Pg1, Cg.T)

# contrast
l1 = crossEntropy(mm(Ch, Ph2.T)/t, argmax(m_cp2))
l2 = crossEntropy(mm(Ph2, Ph1.T)/t, argmax(m_pp))
l3 = crossEntropy(mm(Ph1, Ch.T)/t, argmax(m_p1c))

return (l1 + l2 + l3)/3

For point clouds, we adopt three augmentation methods:
random rotation, random flip, and random cuboid drop. The
rotation is applied on the z-axis with a random angle. The
flip is applied on the x and y-axis with 50% probability re-
spectively. For cuboid dropping, the center of the dropped
cuboid is randomly selected and the scale on every axis is

larger than 10% of the corresponding point cloud scale to
cover at least 1024 pairs.

For images, we adopt two augmentation methods: ran-
dom horizontal flip and random crop-resizing. The random
probability for the former is 50%. All the crops are resized
to 416 × 224. The aspect ratio of crops is between 14/9
and 17/9, and the scale of crops is larger than 30% of the
original image area.

D. More Results
Here, we provide detailed comparisons of segmentation

and detection performance on every single category with
our baselines and provide more ablation studies.

D.0.1 Detailed Results of nuScenes 1% Segmentation
Fine-tuning

We report the detailed fine-tuning results on nuScenes se-
mantic segmentation with 1% annotations in Tab. 1. We can
see that the proposed TriCC achieves best performances on
most categories.

D.0.2 Detailed Results on KITTI 100% 3D Detection

We report the detailed fine-tuning results on KITTI object
detection with 100% annotations in Tab. 2. We can see that
the proposed TriCC achieves great performances in all three
categories, comparable with all the top values.

D.0.3 Ablation Study on Cycle Shortcut

We add one cycle shortcut between Pt and Pt+1. We do
not add more cycle shortcuts between (Ct, Pt+1) and (Ct,
Pt) because they cannot lead to better performance in ex-
periments as shown in Tab. 3. One shortcut is enough for
boosting the efficiency.

E. Details to Adopt Super-Pixel
For triplet contrast, we follow the SLidR [13] to contrast

in the unit of super-pixels instead of single pixels. This is an
effective trick to cluster similar pixels and reduce false neg-
atives in contrast. The core idea is to merge pixels (points)
into super-pixels (points) and contrast them instead of the
original ones. For TriCC, instead of adopting the matching
relationships to find pixel (point)-level contrast pairs, we
adopt matching relationships to find matching super-pixels
(points) and contrast them. The detailed pipeline is:

• Get super-pixels of input images with SLIC [1] algo-
rithm. For each image, we get at most K super-pixels
and each super-pixel Si is a set of original pixels in the
image. In SLIC algorithm, an image can be split into
less thanK super-pixels. Here, for concise, we assume



Table 1. Detailed results of nuScenes 1% semantic segmentation fine-tuning.

Method ba
rri

er
bi

cy
cl

e

bu
s

ca
r

co
ns

t.
ve

h.
m

ot
or

cy
cl

e
pe

de
str

ia
n

tra
ffi

c c
on

e
tra

ile
r

tru
ck

dr
iv.

su
rf.

ot
he

r fl
at

sid
ew

al
k

te
rra

in
m

an
m

ad
e

ve
ge

ta
tio

n

mIoU
Random 0.0 0.0 8.1 65.0 0.1 6.6 21.0 9.0 9.3 25.8 89.5 14.8 41.7 48.7 72.4 73.3 30.3
PointContrast 0.0 1.0 5.6 67.4 0.0 3.3 31.6 5.6 12.1 30.8 91.7 21.9 48.4 50.8 75.0 74.6 32.5
DepthContrast 0.0 0.6 6.5 64.7 0.2 5.1 29.0 9.5 12.1 29.9 90.3 17.8 44.4 49.5 73.5 74.0 31.7
PPKT 0.0 2.2 20.7 75.4 1.2 13.2 45.6 8.5 17.5 38.4 92.5 19.2 52.3 56.8 80.1 80.9 37.8
SLidR 0.0 3.1 15.2 72.0 0.9 18.8 43.2 12.5 14.7 33.3 92.8 29.4 54.0 61.0 80.2 81.9 38.3
TriCC(ours) 0.0 2.6 20.7 73.6 0.3 18.9 49.2 22.0 16.9 33.4 94.5 43.1 57.2 62.1 82.3 82.6 41.2

Table 2. Comparisons with SOTA unsupervised 3D representation learning methods on KITTI 3D object detection fine-tuning with 100%
annotations. We report AP@R11 and mAP@R11 for SECOND models. AP@R40 and mAP@R40 are reported for PV-RCNN models.
For category-wise performances, we report the moderate-level results.

Pretrain
Detection

Vehicle Pedestrian Cyclist
Fine-tuning

Model Easy Moderate Hard
AP@R11 & mAP@R11 w/o road planes
Train from scratch SECOND 77.5 48.7 63.3 73.3 63.2 60.3
SwAV [6] SECOND 77.6 49.5 65.0 73.2 (-0.1) 64.0 (+0.8) 60.9 (+0.6)

DeepCluster [5] SECOND 77.5 49.5 63.2 73.2 (-0.1) 63.4 (+0.2) 60.1 (-0.2)

BYOL [10] SECOND 76.9 43.3 61.0 71.1 (-2.2) 60.4 (-2.8) 57.0 (-3.3)

Point Contrast [16] SECOND 77.5 45.3 65.4 72.7 (-0.6) 62.7 (-0.5) 59.2 (-1.1)

GCC-3D [12] SECOND 78.0 47.9 64.5 73.9 (+0.6) 63.5 (+0.3) 59.8 (-0.5)

STRL [11] SECOND 77.6 48.5 65.5 74.0 (+0.7) 63.9 (+0.7) 60.9 (+0.6)

SLidR [13] SECOND 78.2 49.9 65.8 73.6 (+0.3) 64.6 (+1.4) 61.5 (+1.2)

COˆ3 [7] SECOND 78.0 49.6 65.6 74.4 (+1.1) 64.4 (+1.2) 60.9 (+0.6)

TriCC (ours) SECOND 77.9 53.8 65.5 75.0 (+1.7) 65.7(+2.5) 62.2 (+1.9)

AP@R40 & mAP@R40 with road planes
Train from scratch PV-RCNN 84.5 57.1 70.1 81.3 70.6 66.1
Point Contrast [16] PV-RCNN 84.2 57.7 72.7 82.8 (+1.5) 71.6 (+1.0) 67.5 (+1.4)

GCC-3D [12] PV-RCNN - - - - 71.3 (+0.7) -
STRL [11] PV-RCNN 84.7 57.8 71.9 - 71.5 (+0.9) -
SLidR [13] PV-RCNN 84.3 58.3 71.4 82.9 (+1.6) 71.9 (+1.3) 68.0 (+1.9)

ProposalContrast [18] PV-RCNN 84.7 60.4 73.7 84.5 (+3.2) 72.9 (+2.3) 69.0 (+2.9)

TriCC (ours) PV-RCNN 84.9 60.1 74.8 84.1 (+2.8) 73.3 (+2.7) 69.4 (+3.3)

all the images can get K super-pixels. In practice, we
just simply remove the empty ones. K is set to 150 in
all of our experiments.

• With the super-pixel splitting sets, we can split and
merge the image feature-map Ct ∈ RnCt ,c containing
features of each pixel into features of each super-pixel:

Ĉq
t =

1

|Sq|
∑

Ci
t∈Sq

Ci
t (1)

where Ĉq
t is the feature of the qth super-pixel which is

the mean value of all the pixels belonging to it.

• Since we get the matching relationships m̂Ct,Pt
and

mPt,Pt+1
between image pixels and LiDAR points

through the calibrated relationship and our consistent
constraint, we can also get the super-points with:

P̂qt =
1

nq

∑
Ci

t∈Sq

∑
m̂i,j

Ct,Pt
=1

Pjt

P̂qt+1 =
1

nq

∑
Ci

t∈Sq

∑
m̂i,j

Ct,Pt
=1

P
σ(mj

Pt,Pt+1
)

t

(2)



Table 3. Ablations on more cycle shortcuts. We pre-train the back-
bones for 20 epochs and compare the 1% nuScenes segmentation
fine-tuning performance (mIoU).

shortcut between mIoU
train from scratch 30.3
no shortcut 39.7
(Pt+1,Pt) 40.8
(Pt+1,Pt) & (Ct,Pt+1) 40.8
(Pt+1,Pt) & (Ct,Pt) 40.5

where m̂Ct,Pt
is the transposition of m̂Pt,Ct

, and σ
is the argmax function. nq is the number of points
belonging to the qth super-point. Since m̂Ct,Pt may
be a one-to-many mapping relationship (one pixel is
mapped to many points), we adopt the inner summary
function and, thus, nq ≥ |Sq|.

• With Ĉt ∈ RK,c, P̂t ∈ RK,c, and P̂t+1 ∈ RK,c, we
just replace Ct ∈ RnCt ,c, Pt ∈ RnPt ,c, and Pt+1 ∈
RnPt+1

,c in the Lc with them to build the super-pixel
(point) version of triple contrast:

LĈt,P̂t+1
c =

1

K

∑
q

−log
exp(sim(Ĉq

t , P̂
q
t+1)/τ)∑

j exp(sim(Ĉq
t , P̂

j
t+1)/τ)

(3)

F. Mentionable Misc Notes

Readers may notice that the transition matrix between
Pt and Pt+1 can be pretty large, making the calculation of
the final loss costly. In our implementation, we randomly
sample x (a common value is 4096) points from Pt. Then
all the transition matrices are in the appropriate size. This
compromise may affect the performance since it reduces the
transition path but it is a common trick adopted in many
methods.

One limitation of our TriCC for auto-driving scenes is
that we need 360◦ images provided for aligning with the
360◦ LiDAR. This is commonly available for most auto-
driving scenarios since most auto-driving car contains mul-
tiple cameras around the car.

G. Code Implementation

We utilize the official nuScenes-devkit 2 to conduct the
pre-training and segmentation. For 3D object detection,
OpenPCDet is adopted and we follow its settings of the de-
tection models.

2https://github.com/nutonomy/nuscenes-devkit
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