
Learning to Name Classes for Vision and Language Models:
Supplementary Materials

Sarah Parisot Yongxin Yang Steven McDonagh
Huawei Noah’s Ark Lab

{sarah.parisot, yongxin.yang, steven.mcdonagh}@huawei.com

1. Additional LVIS experiments

We provide additional experiments on the LVIS
dataset [S3] to further analyse the behaviour of our
method. Firstly, we evaluate the impact of learning
more than one word embedding per class; i.e. rather
than using the query ti = [a photo of a ] + [pli1] + [.],
we consider multiple placeholders, namely:
ti = [a photo of a ] + [pli1] + · · ·+ [plim] + [.], where
m is the number of word embeddings to learn. We run
experiments for m = [0, 1, 2, 4, 6, 8], with m = 0 corre-
sponding to the base model and report results in Figure S1.
It can be observed that a large gain in performance is
obtained when replacing original words (m = 0) with
learnable ones (m = 1), with overall average precision
remaining stable as m increases. Rare classes obtain the
largest performance gains, while frequent classes have the
smallest increase, as discussed in the main manuscript
Sec. 4.2. We observe that rare class performance is more
unstable as the number of embeddings increases, which
can be attributed to the limited available training data, with
increased parameter count increasing related overfitting
risks. Based on these observed results, we can see that a
single word embedding per class is sufficient to achieve
good performance, and additional parameters yield no to
very limited improvements.

Secondly, we provide results on the full LVIS valida-
tion set, alongside results from the detection specific prompt
learning technique DETPRO [S1], in Table S1. We high-
light that DETPRO uses VILD [S2] as a base model (pre-
trained on base classes only), and is therefore not directly
comparable with our results. We observe similar trends as
seen on the mini-validation set, with our strategy achiev-
ing large performance gains compared to the original model
(+2.9 AP ours-base, +4.9 AP Ours-all). We also observe
largest gains for common and rare classes (+7.2 AP/c, AP/r,
Ours-all). We note that, compared to the model trained on
the full dataset, performance gains are more limited than
those observed on the mini-validation set. We conjecture
that this could be attributed to the larger number of rare

classes, with very few training samples available, (the mini-
validation set is not comprised of all classes). DETPRO
gains on the rare classes additionally highlight the poten-
tial for prompt learning to work in conjunction with our ap-
proach, by improving performance in the open-vocabulary
setting.

Finally, one additional advantage of our method is that
we can achieve strong performance using only 10% of the
LVIS training data, when learning class names. This no-
tably allows us to boost performance on rare classes, which
are typically penalised by the long tail distribution of the
training dataset. As further analysis we provide, in Ta-
ble S2, results using our balanced subset of 10% of the train-
ing data, and the entire, imbalanced, training dataset. We
can see that overall performance is largely increased using
100% of the training data, and notably better than a model
fine-tuned on the whole dataset in all categories (+1.3 AP).
However, we observe that our model trained with a balanced
subset achieves stronger performance on rare classes (+3.1
AP/r), confirming the supposed advantage of using a bal-
anced dataset. Disentangling whether performance gains,
on both frequent and common classes, are predominantly
due to the additional data or the positive bias favouring these
class groups is a promising avenue for further investigation.

2. Detailed classification results

In this section, we provide detailed, per dataset, results
for our classification experiments. Results for model adap-
tation and open vocabulary experiments are reported in Ta-
ble S3. In addition to baselines discussed in the main
manuscript, we provide, for completeness, results using
the CoCoOp method [S6]. As CoCoOp is significantly
more computationally expensive, we only provide results
reported in [S6] that match our experimental setting (in con-
trast, all CoOp experiments were reproduced locally using
the official code and parameters). CoCoOp is an exten-
sion of the CoOp method that introduces an image feedback
loop using a learnable so-called meta-network to condition
prompt learning. We can see that CoCoOp struggles more at
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Figure S1. Influence of the number of word embeddings learned,
per class, on the average precision for class groups: all classes
(top-left); frequent classes (x>100, top-right); common classes
(100≥x>10, bottom-left); and rare classes (10≥x≥1, bottom-
right), where x pertains to available class samples in each case.

Method AP AP/f AP/c AP/r

VILD-base 27.5 31.9 27.5 17.4
DETPRO-base 28.4 32.4 27.8 20.8

OWL-vit-base 24.4 30.6 21.4 18.0
Ours-base 27.5 31.6 27.6 18.0
Prompt-all 26.1 31.2 24.5 18.7
Ours-all 29.3 32.0 28.6 25.2
OWL-vit-all 30.5 35.0 28.7 24.8

Table S1. Average precision detection results on the LVIS full
validation set. ‘-Base’ and ‘-all’ indicates the model was trained
on base and all classes respectively. ‘Ours’ and ‘prompt’ were
trained on the OWL-vit-base model and 10% of the training data,
OWL-vit-all is trained with 100%.

Method AP AP/f AP/c AP/r

OWL-vit-base 28.8 34.4 24.7 17.7
Ours-all 10% 34.5 35.6 34.4 28.5
Ours-all 100% 35.8 38.5 34.8 25.4
OWL-vit-all 34.5 38.5 33.2 19.1

Table S2. Average precision detection results on the LVIS mini-
validation set: training class names with 10% of the data vs. 100%.

Task 1 (adapting to new datasets) that both CoOp and Ours
(-2.1% average accuracy on base classes), achieves stronger
open-vocabulary generalisation than CoOp (+7.6% average
accuracy, new classes) but worse than ours and CLIP (-
2.51%). Interestingly, reported average results on all classes
outperform our method (+0.49% average accuracy on all
classes), we note the small margin by which our method is
outperformed, despite the fact that CoCoOP uses a much
more complex and expensive image feedback mechanism.
Incorporating a similar feedback loop has the potential to
increase the performance of our approach as well.

Detailed results for sequential adaptation are found in
Table S4. One notable result from sequential adaptation is
that we achieve the most significant gains for datasets with
technical class names such as Stanford cars, which can be
attributed to the fact that class names are (all) learned in-
dependently (i.e. there is no mixture of learned and hand-
crafted technical names).

3. CLIP engineered templates

We provide the list of manually engineered templates for
CLIP zero-shot classification, (mentioned in our main pa-
per, Sec. 4.1), in Table S5. We highlight that four datasets
use our standard template (“a photo of a”) and three datasets
exhibit distinctly disparate sentence templates (namely Eu-
rosat, DTD and UCF 101).

4. Interpretability

We further provide additional results with regards to our
interpretability experiments (see main paper Sec. 4.3), for
the CODA 2.0 dataset [S5]. In Figures S3 and S4, we il-
lustrate how class names were modified for all 29 classes
in the validation set, for the zero-shot and fine-tuned model
(LVIS + SODA [S4]), respectively. On the zero-shot mod-
els, we can see that self-driving specific terms (e.g. pedes-
trian), map to more common terms with similar meaning
(e.g. person). We highlight in particular the tricycle class,
which is mapped to ‘rickshaw’, a more appropriate term for
the visual content available in the dataset. We additionally
note that class names were more substantially modified, as
the highest observed self-similarity is 0.74 (motorcycle). In
comparison, the fine-tuned model shows much higher class
name stability, especially with regards to common classes
(first row). This provides insight into what was learned dur-
ing the fine-tuning process, and the similarity between class
names of SODA and CODA 2.0 datasets (e.g. tricycle class).

We further note large differences in semantic meaning
between the learned representations of the ‘misc.’ and ‘ma-
chinery’ classes, when comparing both models. This sug-
gests that these classes do not comprise representative com-
ponents and should be further separated, potentially via a
clustering strategy. Finally, we point out how the new em-



Dataset CLIP* CoOp CoCoOp† Ours Ours* CLIP* CoOp CoCoOp† Ours Ours* CLIP* CoOp CoCoOp† Ours Ours*

Base classes New classes All classes

Eurosat 56.4 92.7 87.9 92.1 91.3 63.9 52.7 60.04 59.8 63.9 47.7 55.2 - 51.7 59.5
Stanford Cars 63.3 77.3 70.49 80.6 80.6 75.0 61.9 73.49 75.0 75.0 65.3 65.7 - 63.1 63.1
Flowers 102 72.2 97.5 94.87 98.0 98.5 77.9 63.4 71.75 77.1 77.9 71.4 71.5 - 81.5 82.6
Oxford Pets 91.3 93.7 95.20 93.4 93.7 96.9 93.3 97.69 96.9 97 89.1 88.2 - 84.5 88.0
UCF 101 70.6 84.2 82.33 84.1 84.6 77.4 57.3 73.45 73.9 77.4 66.7 64.6 - 70.4 71.4
Aircraft 27.6 40.5 33.41 44.0 43.7 36.1 23.5 23.71 33.3 36.2 24.6 26.3 - 19.4 27.7
DTD 53.4 80.0 77.01 80.3 80.1 60.3 41.5 56.00 60.0 60.0 44.5 49.5 - 54.8 57.6
ImageNet 72.4 76.4 75.98 74.7 74.7 68.1 68.2 70.43 68.1 68.1 66.7 68.9 - 67.7 67.7
Caltech 101 97.0 98.1 97.96 97.9 97.9 94.0 88.8 93.81 94.0 94.0 93.0 91.3 - 93.3 93.3
Food 101 90.1 88.0 90.70 86.5 86.7 91.3 83.9 91.29 91.0 91.3 86.1 79.9 - 81.2 81.5
Sun 397 69.4 80.6 79.74 79.1 79.1 75.5 63.2 76.86 75.5 75.5 62.6 62.5 - 64.3 64.3

Average 69.4 82.6 80.47 82.7 82.8 74.2 64.1 71.69 73.1 74.2 65.2 65.7 69.19 66.5 68.7

Table S3. Detailed results for base to new classification accuracy. * Manually engineered prompt templates. †results copied from [S6].

Dataset CLIP* CoOp Ours Ours* CLIP* CoOp Ours Ours*

New classes All classes

Eurosat 63.9 92.3 92.9 93.4 47.7 65.3 75.1 76.5
Stanford Cars 75.0 82.7 90.8 90.8 65.3 71.8 80.9 80.9
Flowers 102 77.9 97.0 98.5 98.4 71.4 81.3 96.3 96.3
Oxford Pets 96.9 97.6 97.4 97.3 89.1 88.5 86.2 87.5
UCF 101 77.4 87.2 87.7 87.5 66.7 74.6 80.3 80.0
Aircraft 36.1 53.6 62.4 62.4 24.6 32.1 30.8 35.6
DTD 60.3 75.6 76.0 75.9 44.5 54.9 67.1 66.8
ImageNet 68.1 72.7 71.7 71.7 66.7 70.8 69.3 69.3
Caltech 101 94.0 95.9 95.6 95.6 93.0 94.2 93.9 93.9
Food 101 91.3 91.4 89.6 89.7 86.1 84.9 82.1 81.6
Sun 397 75.5 82.1 82.4 82.4 62.6 71.0 71.6 71.6

Average 74.0 84.4 85.9 85.9 65.2 71.7 75.7 76.3

Table S4. Detailed classification accuracy for sequential training.
* manually engineered prompt templates.

Dataset Template

Eurosat a centered satellite photo of [CLASS].
Stanford Cars a photo of a [CLASS]. (default)
Flowers 102 a photo of a [CLASS], a type of flower.
Oxford Pets a photo of a [CLASS], a type of pet.
UCF 101 a photo of a person doing [CLASS].
Aircraft a photo of a [CLASS], a type of aircraft.
DTD [CLASS] texture.
ImageNet a photo of a [CLASS]. (default)
Caltech 101 a photo of a [CLASS]. (default)
Food 101 a photo of [CLASS], a type of food.
Sun 397 a photo of a [CLASS]. (default)

Table S5. List of engineered templates used for CLIP zero-shot
classification, for each of the eleven datasets.

bedding for the traffic light class is poorly adapted to the
class’ original meaning. This can be attributed to the fact
that the data available for this class only comprises mobile
traffic lights, in addition to mislabelled samples (see Fig-
ure S2 for examples of training samples). As such, the vi-
sual content is highly different from learned mappings be-
tween the traffic light term and standard image content. This
highlights that we can easily identify failure modes, poten-

Figure S2. Examples of training samples in the traffic light cate-
gory.

tially allowing, in cases of overfitting or poor training ex-
amples, to correct new words of poor quality (e.g. use the
original word embeddings).

5. Visual examples

In Figure S5, we provide visual examples of improve-
ments to the object detection task for the CODA 2.0 dataset.
We compare our fine-tuned model (LVIS + SODA) to per-
formance after learning class names, and provide the class
agnostic ground truth as reference. We highlight how our
model is able to recognise instances of the misc. class, iden-
tifying construction vehicles (vs. truck category, improving
common class performance), and overall displays a stronger
ability to identify corner cases.

6. Implementation

Implementation in MindSpore will be made available
at https://gitee.com/mindspore/models/
tree/master/research/cv/.

https://gitee.com/mindspore/models/tree/master/research/cv/
https://gitee.com/mindspore/models/tree/master/research/cv/
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Figure S3. Interpretability results on the CODA 2.0 dataset using the zero-shot base model (see main paper, Sec. 4.3). Light blue bars:
highlight the similarity between new word embeddings and original class name embeddings; highlighted classes (green boxes): strong
similarity with original class name (>0.6, closest word), highlighted classes (blue boxes): original name not included within top 5 most
similar classes, highlighted classes (red boxes): modified name semantic meaning markedly different from original.
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Figure S4. Interpretability results on the CODA 2.0 dataset on the base model fine-tuned on LVIS and SODA (see main paper, Sec. 4.3).
Light blue bars: highlight the similarity between new word embeddings and original class name embeddings; highlighted classes (green
boxes): strong similarity with original class name (> 0.6, closest word), highlighted classes (blue boxes): original name not included
within top 5 most similar classes, (red boxes): modified name semantic meaning markedly different from original.
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(a) Ground truth bounding boxes (b) OWL-vit model (c) Ours

Figure S5. Visual results from the CODA 2.0 dataset, comparing our approach to the base model, fine-tuned on LVIS + SODA. Our
approach exhibits improved performance on corner-case classes.


	. Additional LVIS experiments
	. Detailed classification results
	. CLIP engineered templates
	. Interpretability
	. Visual examples
	. Implementation

