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Components K400 [7] SSv2 [5] HMDB51 [8] Diving-48 [10]

Adapter
# Adapters per block 4 (2 SP, 2 TP) 5 (2 SP, 3 TP) 4 (2 SP, 2 TP) 4 (2 SP, 2 TP)
Adapter bottleneck width 128 128 128 128

Optimizer (AdamW [15], Cosine scheduler [14])
Learning rate 3e-4 5e-4 1e-4 3e-4
Weight Decay 5e-2 5e-2 2e-2 3e-2
Batch size 64 128 128 128

Data configuration
Training crop size 224 224 224 224
Frame sampling rate (TS) 16 for TS = 8 16 for TS = 8 16 for TS = 8 16 for TS = 8

Frame sampling rate (TG)
8 for TG = 1
4 for TG = 2
2 for TG = 3

Dynamic sampling
8 for TG = 1
4 for TG = 2
2 for TG = 3

8 for TG = 1
4 for TG = 2
2 for TG = 3

RandAugment [2] ✓ ✓ ✓ ✓
Random erase [17] ✗ ✓ ✓ ✗

Inference configuration
Testing views (temporal×spatial) 3 ×1 1×3 2×3 1×1

Table A1. Implementation details of DUALPATH.

In this document, we include supplementary materials
for “Dual-path Adaptation from Image to Video Transform-
ers”. We first provide more concrete implementation details
(Sec. A), and additional experimental results (Sec. B), in-
cluding the results using a different backbone and ablation
study for the resolution of the grid-like frameset. Finally,
we visualize more attention maps from each path to com-
plement the effectiveness of the proposed method (Sec. C).

A. Implementation Details

We add parallel adapters in the spatial path and serial
adapters in the temporal path to every transformer block. In
our adapter, the dimension of the bottlenecked embedding
is 128. Following prior work [1], Wdown is initialized with
Kaiming Normal [6] and Wup with zero initialization. For
the SSv2 [5] dataset, we additionally insert one adapter be-
fore the multi-head attention layer in the temporal path for

more robust temporal modeling. The experimental configu-
rations according to the datasets are presented in Tab. A1.

B. Additional Results
B.1. Results with Swin-B

Our DUALPATH can be applied to other transformer-
based pretrained image models. We conduct additional
experiments with Swin-B [12, 13] transformer pretrained
on the ImageNet-21K [3]. The Swin-B contains 24 Swin
transformer blocks with 88M parameters, requiring fewer
GFLOPs than ViT-B/16 [4]. Each block consists of
window-based and shifted window-based self-attention lay-
ers. As in the ViT backbones, we add parallel adapters in the
spatial path and serial adapters in the temporal path to every
Swin transformer block. Note that adapters are attached to
only window-based self-attention layers while not adapting
shifted window-based self-attention layers. For the SSv2
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Method & Arch. Pretrain
Model

# Params
Trainable
# Params

GFLOPs SSv2 HMDB51

Full-tuning w/ Swin-B [13] IN-21K 88M 88M 124 44.3 61.2
ST-Adapter [16] w/ Swin-B IN-21K 95M 7M 385 65.1 -
DUALPATH w/ ViT-B/16 CLIP 99M 13M 642 69.3 75.6
DUALPATH w/ ViT-B/16 IN-21K 99M 13M 642 64.7 70.5
DUALPATH w/ Swin-B IN-21K 97M 11M 287 67.8 75.2

Table A2. Performance comparisons for action recognition on the SSv2 [5] and HMDB51 [8] dataset with different backbones and
pretraining datasets.

Method # Frames
K400
R@1↑

Training
GPU Hours ↓

Throughput
(V/s) ↑

Inference
Latency (ms) ↓

Uniformer-B [9] 32 82.9 5000 3.42 314.58
EVL w/ ViT-B [11] 8 82.9 60 25.53 102.88
DUALPATH w/ ViT-B 16 85.4 31 64.21 15.58

Table A3. Training and inference efficiency comparisons. All models are evaluated using V100-32G, following EVL [11].

Resolution
SSv2 HMDB51

GFLOPs R@1 GFLOPs R@1

224×224 w/ 16 frames 642 69.3 612 75.6
448×448 w/ 16 frames 846 70.5 816 75.8
896×896 w/ 16 frames 1694 71.6 1632 76.4
224×224 w/ 48 frames 791 71.2 778 76.3

Table A4. Performance comparisons for action recognition on the
SSv2 [5] and HMDB51 [8] dataset according to the resolution of
the grid-like frameset.

dataset, we use an additional adapter before the multi-head
attention layer of the temporal path similar to the ViT back-
bones. The dimension of the bottlenecked embedding is set
to 128.

Tab. A2 provides the experimental results of DUALPATH
with Swin-B [12, 13] on the SSv2 [5] and HMDB51 [8]
datasets. Although the comparisons between ViT-B/16 and
Swin-B backbones show the significantly low computation
requirement of the Swin-B model (642 vs 287 GFLOPs with
DUALPATH), we attain a comparable performance to the
CLIP pretrained ViT-B/16. Compared to ST-Adapter [16]
with Swin-B, the results consistently demonstrate the effec-
tiveness of DUALPATH over the backbone networks, show-
ing a higher performance of 2.7% with Swin-B on the SSv2
benchmark.

B.2. Additional efficiency analysis

We additionally compare the methods with [9, 11] in
terms of training step time, throughput, and inference la-
tency, following [11]. For a fair comparison, we obtain all
results using V100-32G with PyTorch-builtin mixed preci-
sion. The throughput is measured with the largest batch

size before out-of-memory and the inference latency is mea-
sured with a batch size of 1. As shown in Tab. A3, DU-
ALPATH takes about half of the training GPU hours and
achieves ×2.5 more throughput and ×6.6 faster inference
than EVL [11] under the same hardware condition.

B.3. Resolution of grid-like frameset

The grid-like frameset comprises a stack of 16 scaled
frames to make the same size as the original frame (224 ×
224). We investigate the effectiveness of the resolution of
the grid-like frameset in this section. Note that the impact
of scaling factors that determine the temporal resolution is
demonstrated in Tab. 5 of the main paper.

Specifically, we set the scaling factors w and h to 1, 2,
and 4 while maintaining the temporal resolution as 16 such
that the resolution of the grid-like frameset is 896 × 896,
448×448, and 224×224, respectively. The backbone (ViT-
B/16) is identically used and uniformly sampled 8 frames
are used in the spatial path. Following [16], we sample one
clip cropped into three different spatial views on SSv2 [5]
(i.e., total of 3 clips) at test time. For HMDB51 [8],
two clips sampled from a video are respectively cropped
into three spatial views (i.e., a total of 6 clips). Since a
high-resolution frameset contains more detailed informa-
tion about the original frames, the highest performance is
obtained with the 896×896 size of the frameset in Tab. A4.
However, the computational cost quadratically increases as
the resolution of the grid-like frameset increases. When we
use 48 frames (i.e., TG = 3) with the 224 × 224 size of
the frameset, competitive performance is achieved in both
datasets. It supports the resolution choice of DUALPATH in
terms of the trade-off between performance and computa-
tional cost.



C. More Attention Visualization of DUALPATH

The additional attention visualization is illustrated in
Fig. A1. We depict the attention maps of xSP

t {[CLS]}
and xTP

g {[CLS]} from the final transformer block of each
path. All videos are sampled from the SSv2 [5] dataset
and ViT-B/16 is used as the backbone. While we use 8
frames in the spatial path, the attention maps corresponding
to only 4 frames are displayed for visibility. Interestingly,
the results show that the model trained with DUALPATH
is capable of focusing on dynamic action-related regions
in both adaptation paths. As exemplified in Fig. A1a and
Fig. A1c, xSP

t {[CLS]} of the spatial path tends to focus
on action-related objects, and xTP

g {[CLS]} of the temporal
path concentrates on action-related movements. Therefore,
the two paths complement each other, leading to spatiotem-
poral modeling.
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Frame 3 Frame 7 Frame 11 Frame 15
Attention from SA

(a) Removing [something], revealing [something] behind

Attention from TA

Frame 4 Frame 8 Frame 12 Frame 16
Attention from SA

(b) Moving [something] up

Attention from TA

Frame 4 Frame 8 Frame 12 Frame 16
Attention from SA

(c) Pushing [something] so that it falls off the table

Attention from TA

Frame 3 Frame 7 Frame 11 Frame 15
Attention from SA

(d) Pushing [something] from left to right

Figure A1. Visualization of attention maps of each path for videos from the SSv2 [5] dataset.
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