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1. Datasets for Pretraining

We use the large-scale image-text corpora, which include
MS-COCO [10], Visual Genome [8], SBU Captions [11],
and Conceptual Captions [13] for pretraining for fair com-
parisons with the previous works [2, 5, 9, 17]. Table 8
presents the statistics of the pretraining datasets such as the
number of images and captions. Note that the size of the
CC3M dataset is slightly different from other works [9, 17]
since CC3M is webly-crowded and some of the download
links are expired. As a result, the pretraining corpora con-
sist of 4M images and 5.1M image-text pairs.

Table 8. Statistics of pretraining datasets

MS-COCO VG SBU CC3M

# Images 113K 100K 858K 2.89M
# Captions 567K 769K 858K 2.89M

2. Implementation Details

We employ ViT-B/16 [4] with 12 layers as our vision
encoder and initialized it using the weights pretrained on
ImageNet-1K [15]. The text encoder and multi-modal en-
coder are initialized by the first 6 layers and the last 6 layers
of BERTbase [3], respectively. We optimize our model us-
ing batch size of 1024 on 8 NVIDIA RTX A6000 GPUs for
30 epochs. We adopt AdamW optimizer with weight de-
cay 0.02. The learning rate is initialized to 0.00002 and is
warmed up to 2 × 10−4 for 1,000 iterations. After warm
up, the learning rate is decayed to 2 × 10−5 following the
cosine scheduling.

In order to generate soft masks, we compensate the to-
tal weights of masked regions to meet one-half of the to-
tal number of patches. By adopting this method, we can
guarantee that the embedding of the image after being softly
masked will not diverge too significantly from the original
embedding, nor will it be excessively similar to it.

3. Details on Downstream Tasks
Below we provide implementation details of the vision-

language downstream tasks to evaluate our pretraining ap-
proach, including Image-Text Retrieval (ITR), Visual En-
tailment (VE), Visual Question Answering (VQA), and Nat-
ural Language Visual Reasoning (NLVR). For all down-
stream tasks, we use AdamW optimizer, RandAugment, co-
sine learning rate scheduling, and a weight decay, whose
hyperparameters are the same as the pretraining procedure.

Image-Text Retrieval (ITR) For the ITR task, we
conduct our experiments on the Karpathy split [7]
of the Flickr30K [12] and MS-COCO [10] datasets,
which consist of 29k/1k/1k and 113k/5k/5k images for
train/validation/test, respectively. We fine-tune the model
using the ITM and ITC losses, using a batch size of 256,
with a learning rate of 0.00001, for 10 epoch for Flickr30K
and 5 epochs for MS-COCO. For inference, we first obtain
top-k candidates based on similarity scores from the uni-
modal encoders, as shown in (1) of the main paper, and then
compute their ITM scores given by (4) of the main paper, to
rank the candidates, where k is set to 128 for Flickr30K and
256 for MS-COCO.

Visual Entailment (VE) We use the SNLI-VE [16]
dataset, which consists of 30k/1k/1k images for
train/validation/test, respectively. The dataset is built
upon the Flickr30K and Stanford Natural Language Infer-
ence (SNLI) [1] datasets. We optimize the pretrained model
for 5 epochs using a batch size of 256 with a learning rate
of 0.00002.

Natural Language Visual Reasoning (NLVR) We eval-
uate our model on the NLVR2 [14] dataset, which con-
sists of 86k/7k/7k examples for train/dev/test, respectively.
Since the task requires a pair of images as input, we modify
our model by duplicating the transformer block, as men-
tioned in Section 5.2. We first train the pretrained model
using a 4M pretraining corpus for one more epoch to adjust
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(a) On the table is packaged headphones and scissors. (b) A chair and a bed in a small room.

Figure 4. Additional word-conditional Grad-CAM visualization of our method and ALBEF [9] after pre-training.

Table 9. Image-text retrieval results on MS-COCO with Grad-
CAM (ours) and normalized cross-attention map. The bold-faced
numbers indicate the best performance.

Method TR@1 IR@1
Cross-Attention 75.68 59.48
Grad-CAM (Ours) 76.62 60.15

the modified model, using a batch size of 256 with a learn-
ing rate of 0.00002. We fine-tuned the adjusted model for
10 epochs, using a batch size of 128 with a learning rate of
0.00002.

Visual Question Answering (VQA) We conduct exper-
iments on VQA2.0 dataset [6], which is based on the im-
ages collected from the MS-COCO dataset. The dataset
consists of 83k/41k/81k images for train/validation/test, re-
spectively. Following the previous works [9, 17], we uti-
lize both the training and validation sets for training, and
also include additional question-answer pairs from the Vi-
sual Genome dataset. Since each question in the VQA2.0
dataset is associated with 10 answers, we also weigh the
loss for each answer based on its frequency among all an-
swers, following [9]. We fine-tune the pretrained model for
8 epochs, using a batch size of 256, with a learning rate of
0.00002.

4. Design Choice for SoftMask

We conducted an additional experiment to compare
Grad-CAM and normalized cross-attention maps to gen-
erate soft masks. Table 9 presents that utilizing Grad-
CAM outperforms using normalized cross-attention maps.
It shows that Grad-CAM provides more suitable guidance
than cross-attention maps to generate the soft mask.

5. Additional Qualitative Results

In Figure 4, we show more visualizations of word-
conditional Grad-CAM of our method and ALBEF [9] af-
ter pre-training. In general, our model provides Grad-CAM

with more accurate and diverse attributes of the concepts
than ALBEF, which is also presented in Figure 3 in the main
paper. However, our model may learn bias towards the ob-
ject and scene if the most discriminative part is masked with
high weights, as we discussed in Section 5.7. For instance,
in Figure 4 (b) our model fires on the wall for “bed”, since
bed usually comes with wall.
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