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A. Scaling property of a 8× 8 DCT
Consider an 8 × 8 2D-DCT defined as the following

where αi = 1/
√
2 if i = 0, else 1, u, v,m, n ∈ [0..7].

Xu,v =
αuαv

4

∑
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xm,n cos
[π(2m+ 1)u

16

]
cos

[π(2n+ 1)v

16

]
(1)

We then calculate how much the DCT scales up the
min/max values considering the following two cases.

• If u, v = 0

If u, v = 0 then the resulting coefficient X0,0 is simply:

X0,0 =
1

8

7∑
m=0

7∑
n=0

xm,n · cos(0) cos(0) (2)

=
1

8

7∑
m=0

7∑
n=0

xm,n (∵ cos(0) = 1) (3)

Which is minimized/maximized when xm,n is min/max:

min(X0,0) =
1

8
min(xm,n) · 8 · 8 (4)

= min(xm,n) · 8 (5)

max(X0,0) =
1

8
max(xm,n) · 8 · 8 (6)

= max(xm,n) · 8 (7)
So applying 8× 8 DCT to an input with min/max value of
[-128, 127] scales the output min/max value to:

min(X0,0) = −128 · 8 = −1024 (8)
max(X0,0) = 127 · 8 = 1016 (9)

• If u ̸= 0 or v ̸= 0

In this case, the amplitude of DCT coefficient Xu,v will be
maximized if the input data sequence resonates with (i.e.
match the signs of) the cosine signal of the corresponding
DCT bases. We will show that this value is less than or
equal to the magnitude when u, v = 0. We first consider
the 1D case and then use it to calculate the 2D case. The

1D DCT is as follows.

Xu =
αu

2

7∑
m=0

xm × cos

[
π(2m+ 1)u

16

]
(10)

Where the DCT bases are:
αu

2
cos

[
π(2m+ 1)u

16

]
, m, u ∈ [0..7] (11)

This 1D DCT will be maximized when the signs of xm

match the signs of the DCT bases. Likewise, it will be
minimized when the signs are exactly the opposite. There-
fore, we compare the absolute sum of the DCT bases and
show that it is less than or equal to the sum when u = 0.
This absolute sum of DCT bases can be interpreted as the
scale-up factor as it shows how much the input 1’s with
matching signs are scaled up. The following values are
rounded to the third decimal place.
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We can see that for all u, the absolute sums of DCT bases
are less than or equal to the sum when u = 0. 2D DCT
is simply a DCT on each axis (rows and columns), so the



2D scale-up factors will be a pairwise product for any pairs
of u with replacement. This will still not exceed the value
when we choose u = 0 twice. Therefore, we can conclude
that the minimum and maximum values calculated in the
u, v = 0 case will hold for all 8 × 8 DCT coefficients.
Thus, 8× 8 DCT will scale up the min/max value by 8.

B. Compute cost to decode JPEG
JPEG is decoded through the following steps.

(a) Decode Huffman codes to RLE symbols
(b) Decode RLE symbols to quantized DCT coefficients
(c) De-quantize the DCT coefficients
(d) Apply inverse-DCT to the DCT coefficients
(e) Shift value from [-128, 127] to [0, 255]
(f) Upsample Cb, Cr by 2× for each dimension
(g) Convert YCbCr to RGB

We count the number of operations (OPs) for each step:

(a) Read Ns Huffman codes and recover Ns RLE symbols
= Ns +Ns = 2Ns OPs

(b) Read Ns RLE symbols and recover 8 × 8 quantized
DCT coefficients = Ns + 64 OPs

(c) Multiply 8 × 8 quantization table element-wise with
8× 8 DCT coefficients = 64 OPs

(d) The 8× 8 inverse DCT is given as:

xm,n =
1

4
γmγn

∑
u,v

Xu,v cos

[
(2m+ 1)uπ

16

]
cos

[
(2n+ 1)vπ

16

]
(12)

Where

γi =

{
1√
2

if i = 0

1 otherwise

• If m,n ∈ [1..7]
We need 2 cos+10mul + 3add + 3div per step as
γi = 1. Number of OPs: 7× 7× 18 = 882

• If m = 0, n ∈ [1..7] or m ∈ [1..7], n = 0
We need 2 cos+10mul + 3add + 4div + 1sqrt per
step. OPs: 7× 20× 2 = 280

• If m = 0, n = 0
2 cos+10mul + 3add + 5div + 2sqrt = 22 OPs

Total OPs per 8× 8 block: 882 + 280 + 22 = 1184

(e) Add 128 to every elements of xm,n = 64 OPs
(f) Upsample 8 × 8 Cb and Cr block to 16 × 16: 256 ×

2 = 512 OPs per 6 blocks. This is because 4 Y blocks
are paired with 1 Cb and Cr block. Per-block cost:
512/6 = 85.3 OPs.

(g) YCbCr is converted to RGB using [1]:
R = Y + 1.402(Cr − 128)

G = Y − 0.344136(Cb − 128)− 0.714136(Cr − 128)

B = Y + 1.772(Cb − 128)

For three blocks – Y, Cb, and Cr – the number of OPs
is 64 × (2add + 6sub + 4mul) = 768. We ignore the
cost of rounding and min/max clamping for simplicity.
Thus, the per-block cost is 768/3 = 256 OPs

Recovering DCT coefficients requires going through steps
(a)-(c), where the compute cost sums up to 3Ns+128 OPs.
Full decoding requires 3Ns + 1717.3 OPs. We can see that
most of the decoding cost comes from the inverse-DCT,
which costs 1184 OPs to compute. Note that this result is
only an estimate and can vary under different settings.

C. Conversion matrix for sub-block conversion
The conversion matrix A can be calculated using the ba-

sis transform from L×M number of N ×N DCT bases to
LN ×MN DCT bases. Let TN×N as a 1-D DCT bases of
size N ×N then:

TN×N =

√
2

N


1√
2

1√
2

· · · 1√
2

cos[ 1π2N ] cos[ 3π2N ] · · · cos[ (2N−1)π
2N ]

...
...

. . .
...

cos[ (N−1)π
2N ] cos[ 3(N−1)π

2N ] · · · cos[ (2N−1)(N−1)π
2N ]

 (13)

TN×N is an orthogonal matrix [2]. Hence,
TTT = I TT = T−1 (14)

Define Blarge as TLN×LN and Bsmall as a block diagonal
matrix of TN×N with size LN × LN :

Bsmall =

T
N×N · · · 0

...
. . .

...
0 · · · TN×N

 (15)

Then the conversion matrix AL,N is [3]:
Blarge = AL,N ×Bsmall (16)

AL,N = Blarge ×B−1
small (17)

Where B−1
small = BT

small due to Eqs. (14) and (15). Thus,
AL,N = Blarge ×BT

small (18)
We can also see that B−1

large = BT
large. Thus,

A−1
L,N = (Blarge ×BT

small)
−1 (19)

= (BT
small)

−1 ×B−1
large (20)

= Bsmall ×BT
large (21)

= AT
L,N (22)

D. Sub-band approximation
Define x(m,n) as the 2D image data, and X(k, l) as the

2D DCT coefficient of x(m,n) where m,n, k, l ∈ [0..N −
1]. Then, define xLL(m

′, n′) as the 2× downsized image of
x(m,n). Then xLL is given as:

xLL(m
′, n′) =

1

4
{x(2m′, 2n′) + x(2m′ + 1, 2n′)+

x(2m′, 2n′ + 1) + x(2m′ + 1, 2n′ + 1)} (23)



where m′, n′, k′, l′ ∈ [0, ..N2 − 1]. Similarly, define
XLL(k

′, l′) as the 2D DCT coefficient of xLL(m
′, n′).

Mukherjee and Mitra’s work [4] shows that X(k, l) can be
represented in terms of XLL(k, l):

X(k, l) =

{
2 cos( πk

2N ) cos( πl
2N )XLL(k, l) 0 ≤ k, l ≤ N

2 − 1
0 otherwise

(24)

Which can be further simplified assuming that k, l are neg-
ligible compared to 2N : πk

2N , πl
2N ≈ 0

X(k, l) ≈
{

2XLL(k, l) 0 ≤ k, l ≤ N
2 − 1

0 otherwise
(25)

We can follow the same process for L ×M downsampling
from LN ×MN DCT coefficient to N ×N DCT [4]:

X(k, l) ≈
{ √

LM XLL(k, l) 0 ≤ k, l ≤ N − 1

0 otherwise
(26)

Thus, Eq. (26) implies the approximate up and downsam-
pling formula as:

• Upsampling:

XLN×MN ≈
[√

LMXN×N 0N×(MN−N)

0(LN−N)×N 0(LN−N)×(MN−N)

]
(27)

• Downsampling:

XN×N ≈
1√
LM

XLN×MN [0 :N , 0 :N ] (28)

E. Fourier transform’s rotational property
The proof of the Fourier transform’s rotational property

is as follows. Define g(x) as a function of x where x ∈ Rd.
The Fourier transform of g is:

F [g(x)] = G(X) =

∫
g(x)e−j2πxT X dx (29)

We can describe the rotated version of x as u = Ax where
A is a rotation matrix in which

AT = A−1 (30)

x = A−1u = AT u (31)
Define the rotated version of g as h where g(Ax) = h(x).
Then, the Fourier transform of g(Ax) becomes:

F [g(Ax)] = F [h(x)] =
∫

h(x)e−j2πxT X dx (32)

=

∫
g(Ax)e−j2πxT X dx (33)

=

∫
g(u)e−j2π(AT u)T X du (34)

(∵ du = |det(A)|dx, |det(A)| = 1)
(35)

=

∫
g(u)e−j2πuT AX du (36)

F [g(Ax)] =
∫

g(u)e−j2πuT AX du = G(AX) (37)

Thus, the Fourier transform of the rotated g(x) is equal to
rotating the Fourier transform G(X).

F. DCT to DFT sub-block conversion
If we define ω = exp(−j2π/N) then the N × N 1-D

DFT bases matrix WN×N is given as:

WN×N = 1√
N


1 1 1 · · · 1
1 ω ω2 · · · ωN−1

1 ω2 ω4 · · · ω2(N−1)

...
...

...
. . .

...
1 ωN−1 ω2(N−1) · · · ω(N−1)(N−1)

 (38)

Setting DN×M as the DFT coefficient block of size N×M ,
the conversion formula becomes:

DLN×MN = ÂL,N

X0,0
N×N · · · X0,M−1

N×N
...

. . .
...

XL−1,0
N×N · · · XL−1,M−1

N×N

 ÂT
M,N (39)

The corresponding decomposition is then:X0,0
N×N · · · X0,M−1

N×N
...

. . .
...

XL−1,0
N×N · · · XL−1,M−1

N×N

 = Â−1
L,NDLN×MN Â−1T

M,N (40)

Where Â denotes the DCT to DFT conversion matrix.
This can be calculated by following the same process from
Eq. (18) with replacing Blarge as W of appropriate size.

G. Resize strategy for DCT
While it is possible to do an arbitrary resize of P

Q ×
R
S by

first upsampling P ×R times and downsampling by Q×S,
it is preferable to avoid it due to the compute cost of an
additional resize. Therefore, we utilize a different strategy.
During random resized crop, we fuse the cropping and re-
size together in a way that the crop size is limited to the
factors of a resize target. For example, if we are resizing to
28×28×8×8, then the height and width of the crop window
are selected from the set: {1, 2, 4, 7, 14, 28, 56, ...}. This
way, we can reduce computation as upsampling or down-
sampling is limited to an integer multiple. This strategy has
been used throughout our experiments.

H. Comparison with Pillow-SIMD
Pillow-SIMD [5] is a highly optimized version of Pil-

low [6]. It allows faster resizing using CPU SIMD instruc-
tions. The main bottleneck of our pipeline is resizing. If
we reduce resizing by pre-resizing the data to 256 × 256,
then our method shows 9.1% and 29.2% faster training and
evaluation versus Pillow-SIMD as shown in Tab. 1. We be-
lieve our method could be further sped up given analogous
optimization efforts.

Method Img. size Model Train Data Fwd/Bwd Train Eval Data Fwd Eval
SIMD 5122 ViT-Ti 1043.3 835.2 724.7 1743.9 2832.5 1630.8

Ours 5122 ViT-Ti 816.2
(-21.8%)

857.2
(+2.6%)

687.6
(-5.1%)

775.3
(-55.5%)

2847.5
(+0.5%)

752.3
(-53.9%)

SIMD 2562 ViT-Ti 1176.4 839.6 722.4 2232.0 2832.6 1893.9

Ours 2562 ViT-Ti 1530.9
(+30.1%)

854.2
(+1.7%)

788.0
(+9.1%)

3070.6
(+37.6%)

2842.9
(+0.4%)

2447.1
(+29.2%)

Table 1. Comparison with Pillow-SIMD. Our pipeline shows
faster training and evaluation if we reduce resizing.



I. Training settings
The hyperparameter settings and augmentation subset

we used for training are reported in Tables 2 and 3. RGB
models used the recipe given in [7], including the SwinV2
models [8], for a fair comparison.

Model
Learning

Rate
Weight
Decay

RandAug.
Magnitude

Input
Size Epochs

ViT-Ti 1e-3 1e-4 10 2242 300
ViT-S 1e-3 1e-4 10 2242 90

SwinV2-T (RGB) 1e-3 1e-4 10 2562 300
JPEG-Ti 3e-3 1e-4 3 2242 300
JPEG-S 3e-3 3e-4 3 2242 90

SwinV2-T (DCT) 1e-3 1e-4 3 2562 300

Table 2. Hyperparameter settings of the trained models.

Models Subset

JPEG-Ti
Brightness, Contrast, Color, AutoContrast,

AutoSaturation, MidfreqAug, Posterize, SolarizeAdd,
Grayscale, ChromaDrop, Translate, Cutout, Rotate90

JPEG-S
SwinV2-T (DCT)

Brightness, Contrast, Color, AutoContrast,
AutoSaturation, MidfreqAug, Sharpness, Posterize,

Grayscale, ChromaDrop, Translate, Cutout, Rotate90

RGB models [7]
Brightness, Contrast, Equalize, Color,

AutoContrast, Sharpness, Invert, Posterize, Solarize,
SolarizeAdd, Translate, Cutout, Rotate, Shear

Table 3. Augmentation subset of RandAugment for the models.

J. Smaller patch sizes
SwinV2 [8] uses a patch size of 4. 8 × 8 JPEG DCT

blocks can be adapted to support this by decomposing them
into sixteen 2 × 2 blocks using sub-block conversion (Sec
5.2.). Then, we can use any of the embedding strategies
discussed in Sec. 4. In general, for a desired patch size p,
we need to decompose the DCT blocks to be at most p

2 ×
p
2 .

K. Measurement process
Latency measurements to decode and augment follow

Algorithms 1 and 2. Data Loading throughputs for both
train and evaluation is measured using Algorithm 3. Model
Fwd/Bwd measures the throughput of model forward and
backward pass using Algorithm 4. Model Fwd measures
the throughput of the model forward pass using Algo-
rithm 5. Train Pipeline and Eval Pipeline throughput is
measured using Algorithms 6 and 7.

Algorithm 1 Decoding latency measurement

latency← 0
for i = 0..N do

start time← time()
data← decode(Filename)
end time← time()
latency← latency + (end time − start time)

end for
return latency/N

Algorithm 2 Augment latency measurement

latency← 0
for i = 0..N do

data← decode(Filename)
start time← time()
data← augment(data)
end time← time()
latency← latency + (end time − start time)

end for
return latency/N

Algorithm 3 Data Loading throughput measurement

start time← time()
for i = 0..N do

data, label← to gpu(next(data loader))
end for
end time← time()
latency← end time − start time
return (N · len(data))/latency

Algorithm 4 Model Fwd/Bwd throughput measurement
dummy data, dummy label← to gpu(random(data shape))
start time← time()
for i = 0..N do

data, label← copy(dummy data, dummy label)
mixup(data, label)
output← model(data)
loss← criterion(output, label)
backward(loss)
step(optimizer)

end for
end time← time()
latency← end time − start time
return (N · len(dummy data))/latency

Algorithm 5 Model Fwd throughput measurement
dummy data, dummy label← to gpu(random(data shape))
start time← time()
for i = 0..N do

output← model(dummy data)
loss← criterion(output, dummy label)

end for
end time← time()
latency← end time − start time
return (N · len(dummy data))/latency



Algorithm 6 Train Pipeline throughput measurement

start time← time()
for i = 0..N do

data, label← to gpu(next(data loader))
mixup(data, label)
output← model(data)
loss← criterion(output, label)
backward(loss)
step(optimizer)

end for
end time← time()
latency← end time − start time
return (N · len(data))/latency

Algorithm 7 Eval Pipeline throughput measurement

start time← time()
for i = 0..N do

data, label← to gpu(next(data loader))
output← model(data)
loss← criterion(output, label)

end for
end time← time()
latency← end time − start time
return (N · len(data))/latency
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