
Self-positioning Point-based Transformer for Point Cloud Understanding
(Supplement)

Jinyoung Park1*, Sanghyeok Lee1∗, Sihyeon Kim1, Yunyang Xiong2, Hyunwoo J. Kim1†

1Korea University, 2Meta Reality Labs
{lpmn678, cat0626, sh bs15, hyunwoojkim}@korea.ac.kr

yunyang@fb.com

In this supplementary material, we provide implementation details (Appendix A), and describe further experimental results
(Appendix B).

A. Implementation details
In this section, we describe the implementation details of our experiments. We implement our Self-positioning Point-based

Transformer (SPoTr) using Pytorch [1] and OpenPoints [2], which is a library for dealing with point cloud data. For training
SPoTr, we use 1,024 points for shape classification (ScanObjectNN dataset [3]), 2,048 points for part segmentation (SP-Part
dataset [4, 5]), and 40K points for scene segmentation (S3DIS dataset [6]) as the input.

A.1. Shape classification

For shape classification, we train our models with a batch size of 32 for 250 epochs and AdamW optimizer [7] using
NVIDIA RTX Titan 24GB GPU. We use CrossEntropy loss with label smoothing following existing methods [8]. We opt
0.002 for the initial learning rate, which is decayed by the cosine annealing strategy [9]. During training, each sample is
scaled in a range of [0.9, 1.1]. We stack 4 SPoTr blocks (l = 0) and the dimensionality is doubled for each block. The
detailed architecture used for shape classification is described in Table 1.

shape
classification

stage 0
(MLP)

stage 1
(SPoTr Block)

stage 2
(SPoTr Block)

stage 3
(SPoTr Block)

stage 4
(SPoTr Block)

dim : 48 dim : 96 dim: 192 dim: 384 dim: 768
l : 0 l : 0 l : 0 l : 0

SP points : 24 SP points : 24 SP points : 24 SP points : 24
γ : 16 γ : 16 γ : 16 γ : 16
τ : 0.1 τ : 0.1 τ : 0.1 τ : 0.1

Table 1. Detailed architecture specifications for shape classification.

A.2. Part segmentation

For part segmentation, we train our models for 150 epochs with a batch size of 4 per GPU with 8 GPUs using NVIDIA
RTX Titan 24GB GPU. We opt AdamW optimizer [7] with an initial learning rate of 0.001 and a learning rate decay at
[90, 120] epochs with a decay rate of 0.5. We use point cloud scaling, jittering, and height appending following [10] for
data augmentation. Following previous works [11], we apply a U-net designed architecture with SPoTr block and Feature
propagation block for segmentation. The details of our model for part segmentation are described in Table 2.

*First two authors have equal contribution.
†is the corresponding author.

1

shape part
segmentation

stage 0
(MLP)

stage 1
(SPoTr Block)

stage 2
(SPoTr Block)

stage 3
(SPoTr Block)

stage 4
(SPoTr Block)

dim : 128 dim: 256 dim: 512 dim : 1024 dim : 2048
l : 0 l : 0 l : 0 l : 0

SP points : 16 SP points : 16 SP points : 16 SP points : 16
γ : 16 γ : 16 γ : 16 γ : 16
τ : 0.1 τ : 0.1 τ : 0.1 τ : 0.1

Table 2. Detailed architecture for shape part segmentation.

A.3. Scene segmentation

For scene segmentation, we train our models for 100 epochs with a batch size of 2 per GPU with 4 GPUs using NVIDIA
Tesla V100 32GB GPU. The model is trained by CrossEntropy loss with label smoothing. We use the initial learning rate of
0.01, which is decayed by the cosine annealing scheme [9]. We use point cloud scaling, jittering, rotation, color drop, and
height appending following [10] for data augmentation. Similar to part segmentation, we apply a U-net designed architecture
with SPoTr block and Feature propagation block for scene segmentation. The details of our model for scene segmentation
are described in Table 3.

scene
segmentation

stage 0
(MLP)

stage 1
(SPoTr Block)

stage 2
(SPoTr Block)

stage 3
(SPoTr Block)

stage 4
(SPoTr Block)

dim : 64 dim: 128 dim: 256 dim : 512 dim : 1024
l : 4 l : 4 l : 4 l : 4

SP points : 16 SP points : 16 SP points : 16 SP points : 16
γ : 16 γ : 16 γ : 16 γ : 16
τ : 0.5 τ : 0.5 τ : 0.5 τ : 0.5

Table 3. Detailed architecture for scene segmentation.

B. Further experimental results
B.1. Detailed semantic segmentation results

In this section, we provide more detailed semantic segmentation results on SN-Part [4] and S3DIS [6], respectively. For
category-wise mIoU, we present Table 4 for SN-Part and Table 5 for S3DIS.

B.2. Sensitivity analysis for self-positioning points (SP points)

To analyze the sensitivity of SPoTr to the number of Self-Positioning points (SP points), we compare the performance of
the model with the diverse number of SP points in Table 6. We empirically found that 24 SP points are most effective for our
SPoTr architecture on SONN dataset.

B.3. Efficiency comparison

To investigate the efficiency of SPoTr, we compare our method with recent baselines [20, 24] on ScanObjectNN [3].
Specifically, we use DeepSpeed [25] library as a profiler for calculating the number of parameters and FLOPS during infer-
ence. For comparison, we also opt a light version of SPoTr (SPoTr*), where the channel size of each layer is 2/3. The results
are summarized in Table 7. It is worth noting that SPoTr achieves the best performance (88.6%) with fewer parameters of
3.3(M) than 13.2(M) of PointMLP and 6.8(M) of RepSurf. Further, although SPoTr* only requires 1.6(M) parameters and
5.5 GFLOPS, it still shows significant gains over the previous best methods (+2.2%). In short, we demonstrate that SPoTr is
a computation-efficient and memory-efficient method.

Method mIoU air bag cap car chair ear guitar knife lamp laptop motor mug pistol rocket skate tableplane phone bike board

PointNet [12] 83.7 83.4 78.7 82.5 74.9 89.6 73.0 91.5 85.9 80.8 95.3 65.2 93.0 81.2 57.9 72.8 80.6
PointNet++ [11] 85.1 82.4 79.0 87.7 77.3 90.8 71.8 91.0 85.9 83.7 95.3 71.6 94.1 81.3 58.7 76.4 82.6
PointCNN [13] 86.1 84.1 86.5 86.0 80.8 90.6 79.7 92.3 88.4 85.3 96.1 77.2 95.2 84.2 64.2 80.0 83.0
DGCNN [14] 85.1 84.2 83.7 84.4 77.1 90.9 78.5 91.5 87.3 82.9 96.0 67.8 93.3 82.6 59.7 75.5 82.0
RSCNN [8] 86.2 83.5 84.8 88.8 79.6 91.2 81.1 91.6 88.4 86.0 96.0 73.7 94.1 83.4 60.5 77.7 83.6
KPConv [10] 86.4 84.6 86.3 87.2 81.1 91.1 77.8 92.6 88.4 82.7 96.2 78.1 95.8 85.4 69.0 82.0 83.6
PointASNL [15] 86.1 84.1 84.7 87.9 79.7 92.2 73.7 91.0 87.2 84.2 95.8 74.4 95.2 81.0 63.0 76.3 83.2
PCT [16] 86.4 85.0 82.4 89.0 81.2 91.9 71.5 91.3 88.1 86.3 95.8 64.6 95.8 83.6 62.2 77.6 83.7
PAConv [17] 86.1 84.3 85.0 90.4 79.7 90.6 80.8 92.0 88.7 82.2 95.9 73.9 94.7 84.7 65.9 81.4 84.0
AdaptConv [18] 86.4 84.8 81.2 85.7 79.7 91.2 80.9 91.9 88.6 84.8 96.2 70.7 94.9 82.3 61.0 75.9 84.2
CurveNet [19] 86.8 85.1 84.1 89.4 80.8 91.9 75.2 91.8 88.7 86.3 96.3 72.8 95.4 82.7 59.8 78.5 84.1
PointMLP [20] 86.1 83.5 83.4 87.5 80.5 90.3 78.2 92.2 88.1 82.6 96.2 77.5 95.8 85.4 64.6 83.3 84.3

SPoTr 87.2 85.8 86.9 89.3 82.2 92.0 82.4 91.8 88.6 85.7 96.2 77.6 96.3 85.3 64.0 78.0 84.1

Table 4. Part segmentation results on SN-Part.

Method mAcc mIoU ceiling floor wall beam column window door table chair sofa bookcase board clutter

PointNet [12] 49.0 41.1 88.8 97.3 69.8 0.1 3.9 46.3 10.8 59.0 52.6 5.9 40.3 26.4 33.2
PointCNN [13] 63.9 57.3 92.3 98.2 79.4 0.0 17.6 22.8 62.1 74.4 80.6 31.7 66.7 62.1 56.7
PointWeb [21] 66.6 60.3 92.0 98.5 79.4 0.0 21.1 59.7 34.8 76.3 88.3 46.9 69.3 64.9 52.5
KPConv [10] 72.8 67.1 92.8 97.3 82.4 0.0 23.9 58.0 69.0 91.0 81.5 75.3 75.4 66.7 58.9
PCT [16] 67.7 61.3 92.5 98.4 80.6 0.0 19.4 61.6 48.0 76.6 85.2 46.2 67.7 67.9 52.3
CT [22] - 67.9 94.2 97.7 82.7 0.0 34.4 62.8 68.4 89.8 80.4 78.2 61.4 67.7 64.9
PointTransfomer [23] - 70.4 94.0 98.5 86.3 0.0 38.0 63.4 74.3 89.1 82.4 74.3 80.2 76.0 59.3

SPoTr 76.4 70.8 94.4 98.5 84.0 0.0 34.4 59.9 77.4 83.2 92.5 79.8 76.4 78.5 61.4

Table 5. Scene segmentation results on S3DIS.

SP points 8 16 24 32

Accuracy 88.0 88.1 88.6 88.4

Table 6. Sensitivity analysis for SP points on SONN.

SONN OA ↑ Param ↓ FLOPs ↓
(M) (G)

PointMLP [20] 85.7 13.2 31.4
RepSurf [24] 86.0 6.8 4.9

SPoTr* 88.2 1.6 5.5
SPoTr 88.6 3.3 12.3

Table 7. Efficiency comparison on SONN. SPoTr* is a light version of SPoTr

B.4. Qualitative results

The visualization of part segmentation with SN-Part is provided in Figure 1. We also provide qualitative results on scene
segmentation with S3DIS in Figure 2.

GT

Pred

GT

Pred

Figure 1. Qualitative results on SP-Part.

GT PredInput

Figure 2. Qualitative results on S3DIS.

References
[1] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia

Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-performance deep learning library. In NeurIPS, 2019. 1

[2] Guocheng Qian, Yuchen Li, Houwen Peng, Jinjie Mai, Hasan Abed Al Kader Hammoud, Mohamed Elhoseiny, and Bernard Ghanem.
Pointnext: Revisiting pointnet++ with improved training and scaling strategies. In NeurIPS, 2022. 1

[3] Mikaela Angelina Uy, Quang-Hieu Pham, Binh-Son Hua, Thanh Nguyen, and Sai-Kit Yeung. Revisiting point cloud classification:
A new benchmark dataset and classification model on real-world data. In ICCV, 2019. 1, 2

[4] 3D Warehouse. Sketchup. https://3dwarehouse.sketchup.com/, 2022. 1, 2

[5] Sanghyeok Lee, Minkyu Jeon, Injae Kim, Yunyang Xiong, and Hyunwoo J Kim. Sagemix: Saliency-guided mixup for point clouds.
In NeurIPS, 2022. 1

[6] Iro Armeni, Ozan Sener, Amir R Zamir, Helen Jiang, Ioannis Brilakis, Martin Fischer, and Silvio Savarese. 3d semantic parsing of
large-scale indoor spaces. In CVPR, 2016. 1, 2

[7] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In ICLR, 2019. 1

[8] Yongcheng Liu, Bin Fan, Shiming Xiang, and Chunhong Pan. Relation-shape convolutional neural network for point cloud analysis.
In CVPR, 2019. 1, 3

[9] Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. In ICLR, 2017. 1, 2

[10] Hugues Thomas, Charles R Qi, Jean-Emmanuel Deschaud, Beatriz Marcotegui, François Goulette, and Leonidas J Guibas. Kpconv:
Flexible and deformable convolution for point clouds. In ICCV, 2019. 1, 2, 3

[11] Charles R Qi, Li Yi, Hao Su, and Leonidas J Guibas. Pointnet++: Deep hierarchical feature learning on point sets in a metric space.
In NeurIPS, 2017. 1, 3

[12] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep learning on point sets for 3d classification and segmen-
tation. In CVPR, 2017. 3

[13] Yangyan Li, Rui Bu, Mingchao Sun, Wei Wu, Xinhan Di, and Baoquan Chen. Pointcnn: Convolution on x-transformed points. In
NeurIPS, 2018. 3

[14] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma, Michael M Bronstein, and Justin M Solomon. Dynamic graph cnn for learning
on point clouds. TOG, 38(5):146:1–146:12, 2019. 3

[15] Xu Yan, Chaoda Zheng, Zhen Li, Sheng Wang, and Shuguang Cui. Pointasnl: Robust point clouds processing using nonlocal neural
networks with adaptive sampling. In CVPR, 2020. 3

[16] Meng-Hao Guo, Jun-Xiong Cai, Zheng-Ning Liu, Tai-Jiang Mu, Ralph R Martin, and Shi-Min Hu. Pct: Point cloud transformer.
CVM, 7(2):187–199, 2021. 3

[17] Mutian Xu, Runyu Ding, Hengshuang Zhao, and Xiaojuan Qi. Paconv: Position adaptive convolution with dynamic kernel assembling
on point clouds. In CVPR, 2021. 3

[18] Haoran Zhou, Yidan Feng, Mingsheng Fang, Mingqiang Wei, Jing Qin, and Tong Lu. Adaptive graph convolution for point cloud
analysis. In ICCV, 2021. 3

[19] Tiange Xiang, Chaoyi Zhang, Yang Song, Jianhui Yu, and Weidong Cai. Walk in the cloud: Learning curves for point clouds shape
analysis. In ICCV, 2021. 3

[20] Xu Ma, Can Qin, Haoxuan You, Haoxi Ran, and Yun Fu. Rethinking network design and local geometry in point cloud: A simple
residual MLP framework. In ICLR, 2022. 2, 3

[21] Hengshuang Zhao, Li Jiang, Chi-Wing Fu, and Jiaya Jia. Pointweb: Enhancing local neighborhood features for point cloud process-
ing. In CVPR, 2019. 3

[22] Kirill Mazur and Victor Lempitsky. Cloud transformers: A universal approach to point cloud processing tasks. In ICCV, 2021. 3

[23] Hengshuang Zhao, Li Jiang, Jiaya Jia, Philip HS Torr, and Vladlen Koltun. Point transformer. In ICCV, 2021. 3

[24] Haoxi Ran, Jun Liu, and Chengjie Wang. Surface representation for point clouds. In CVPR, 2022. 2, 3

[25] Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and Yuxiong He. Deepspeed: System optimizations enable training deep learning
models with over 100 billion parameters. In KDD, 2020. 2

https://3dwarehouse.sketchup.com/

	. Implementation details
	. Shape classification
	. Part segmentation
	. Scene segmentation

	. Further experimental results
	. Detailed semantic segmentation results
	. Sensitivity analysis for self-positioning points (SP points)
	. Efficiency comparison
	. Qualitative results

