
Appendix: Training Debiased Subnetworks with Contrastive Weight Pruning

Geon Yeong Park1 Sangmin Lee2 Sang Wan Lee1∗ Jong Chul Ye1,2,3∗
1Bio and Brain Engineering, 2Mathematical Sciences, 3Kim Jaechul Graduate School of AI

Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
{pky3436, leeleesang, sangwan, jong.ye}@kaist.ac.kr

The supplementary material is organized as follows. We first present the proof for Theorem 1 and 2. In section 2, we
extend the presented theoretical example in the main paper to illustrate the risks of geometrical misalignment of embeddings
arising from strong spurious correlations. Additional results are reported in section 3. Optimization setting, hyperparameter
configuration, and other experimental details are provided in section 4.

1. Proofs
In this section, we present the detailed proofs for Theorems 1 and 2 explained in the main paper, followed by an illustration

about the dynamics of weight ratio αi(t) = w̃sp,i(t)/w̃inv(t).

1.1. Proof of Theorem 1

Theorem 1. (Training and test bound) Assume that pe > 1/2 in the biased training environment e ∈ Etrain. Define w̃(t)
as weights pretrained for a finite time t < T . Then the upper bound of the error of training environment w.r.t. pruning
parameters π is given as:

ℓe(π) ≤ 2 exp

(
−

2
(
πinv + (2pe − 1)

∑D
i=1 αi(t)πsp,i

)2
4
∑D

i=1 αi(t)2 + 1

)
, (1)

where the weight ratio αi(t) = w̃sp,i(t)/w̃inv(t) is bounded below some positive constant. Given a test environment e ∈ Etest
with pe = 1

2 , the upper bound of the error of test environment w.r.t. π is given as:

ℓe(π) ≤ 2 exp
(
− 2π2

inv

4
∑D

i=1 αi(t)2 + 1

)
, (2)

which implies that there is an unavoidable gap between training bound and test bound.

Proof. We omit time t in w̃(t) and αi(t) for notational simplicity throughout the proof of Theorem 1 and 2.
We recall the loss function defined in the main paper for convenience.

ℓe(π) =
1

2
EXe,Y e,m[1− Y eŶ e]

=
1

2
EXe,Y e,m

[
1− Y e · sgn

(
w̃T (Xe ⊙m)

)]
,

(3)

where Ŷ e is the prediction of binary classifier, w̃ is the pretrained weight vector, sgn(·) represents the sign function, and ⊙
represents element-wise product.

The prediction from the classifier Ŷ e is defined as

Ŷ e = sgn
(
w̃T (Xe ⊙m)

)
= sgn

(
Oe
)
,

(4)

1

where

Oe := w̃invminvZ
e
inv +

D∑
i=1

w̃sp,imsp,iZ
e
sp,i. (5)

Assume that Y e is uniformly distributed binary random variable. Then,

EXe,Y e,m[Y eŶ e] =
1

2
EXe,m

[
Ŷ e|Y e = 1

]
− 1

2
EXe,m

[
Ŷ e|Y e = −1

]
, (6)

where

EXe,m

[
Ŷ e|Y e = 1

]
= EXe,m

[
sgn

(
Oe
) ∣∣∣ Y e = 1

]
= P

(
Oe > 0

∣∣ Y e = 1
)
− P

(
Oe < 0

∣∣ Y e = 1
)

= 1− 2P
(
Oe < 0

∣∣ Y e = 1
)
,

(7)

and

EXe,m

[
Ŷ e|Y e = −1

]
= P

(
Oe > 0

∣∣ Y e = −1
)
− P

(
Oe < 0

∣∣ Y e = −1
)

= −EXe,m

[
Ŷ e|Y e = 1

]
,

(8)

where we use P
(
Oe < 0

∣∣ Y e = 1
)
= P

(
Oe > 0

∣∣ Y e = −1
)

and P
(
Oe > 0

∣∣ Y e = 1
)
= P

(
Oe < 0

∣∣ Y e = −1
)

thanks
to the symmetry. Therefore, we have

ℓe(π) =
1

2
EXe,Y e,m[1− Y eŶ e]

=
1

2
− 1

2
EXe,m

[
Ŷ e|Y e = 1

]
= P

(
Oe < 0

∣∣ Y e = 1
)
.

(9)

In order to derive a concentration inequality of ℓe(π), we compute a conditional expectation as follows:

EXe,m

[
Oe
∣∣ Y e = 1

]
= EXe,m

[
w̃invminvZ

e
inv +

D∑
i=1

w̃sp,imsp,iZ
e
sp,i

∣∣∣ Y e = 1
]

= EXe,m

[
w̃invminv +

D∑
i=1

w̃sp,imsp,iZ
e
sp,i

∣∣∣ Y e = 1
]

= w̃invπinv + EXe,m

[D∑
i=1

w̃sp,imsp,iZ
e
sp,i

∣∣∣ Y e = 1

]

= w̃invπinv +
D∑
i=1

(2pe − 1)w̃sp,iπsp,i,

(10)

where the last equality follows from the independence of Zsp,· and msp,· as assumed in the main paper. Then,

P
(
Oe < 0

∣∣ Y e = 1
)
= P

(
Oe − EXe,m

[
Oe
]
< −EXe,m

[
Oe
] ∣∣ Y e = 1

)
≤ P

(∣∣∣Oe − EXe,m

[
Oe
] ∣∣∣ > EXe,m

[
Oe
] ∣∣ Y e = 1

)
≤ 2 exp

(
−

2EXe,m

[
Oe
∣∣ Y e = 1

]2
w̃2

inv +
∑D

i=1 4w̃
2
sp,i

)

≤ 2 exp

(
−

2
(
w̃invπinv +

∑D
i=1(2p

e − 1)w̃sp,iπsp,i

)2
w̃2

inv +
∑D

i=1 4w̃
2
sp,i

)

≤ 2 exp

(
−

2
(
πinv +

∑D
i=1(2p

e − 1)αiπsp,i

)2
1 +

∑D
i=1 4α

2
i

)
,

(11)

where the second inequality is obtained using Hoeffding’s inequality, third inequality is from (10), and last inequality is
obtained by dividing both denominator and numerator with w̃2

inv . We use the definition of weight ratio αi = w̃sp,i/w̃inv . For
the second inequality, we use that w̃invminvZ

e
inv ∈ {0, w̃inv} and w̃sp,imsp,iZ

e
sp,i ∈ {−w̃sp,i, 0, w̃sp,i} ∀i in (5) to obtain

the denominator.
Finally, the proof for the positivity of αi(t) comes from Proposition 1 in section 1.3 in this appendix. This concludes the

proof.

1.2. Proof of Theorem 2

Theorem 2. (Training bound with the mixture distribution) Assume that the defined mixture distribution P η
mix is biased, i.e.,

for all i ∈ {1, . . . , D},
P η
mix(Z

η
sp,i = −y | Y e = y) ≤ P η

mix(Z
η
sp,i = y | Y η = y). (12)

Then, ϕ satisfies 0 ≤ ϕ ≤ 1− 1
2pη . Then the upper bound of the error of training environment η w.r.t. the pruning parameters

is given by

ℓη(π) ≤ 2 exp

(
−
2(πinv + (2pη(1− ϕ)− 1)

∑D
i=1 αi(t)πsp,i)

2

4
∑D

i=1 αi(t)2 + 1

)
. (13)

Furthermore, when ϕ = 1− 1
2pη , the mixture distribution is perfectly debiased, and we have

ℓη(π) ≤ 2 exp
(
− 2π2

inv

4
∑D

i=1 αi(t)2 + 1

)
, (14)

which is equivalent to the test bound in (2).

Proof. Recall that Zη
sp,i follows the mixture distribution P η

mix:

P η
mix(Z

η
sp,i | Y

η = y) = ϕP η
debias(Z

η
sp,i | Y

η = y) + (1− ϕ)P η
bias(Z

η
sp,i | Y

η = y), (15)

where

P η
debias(Z

η
sp,i | Y

η = y) =

{
1, if Zη

sp,i = −y

0, if Zη
sp,i = y

(16)

is a debiasing distribution to weaken the correlation between Y η and Zη
sp,i by setting the value of Zη

sp,i as −Y η , and

P η
bias(Z

η
sp,i | Y

η = y) =

{
pη, if Zη

sp,i = y

1− pη, if Zη
sp,i = −y.

(17)

Then, with definition in (16) and (17),

Pmix(Z
η
sp,i = −y|Y η = y) = ϕ+ (1− ϕ)(1− pη)

Pmix(Z
η
sp,i = y|Y η = y) = (1− ϕ)pη,

(18)

for y ∈ {−1, 1}. Then, based on the assumption, ϕ+ (1− ϕ)(1− pη) ≤ (1− ϕ)pη , which gives ϕ ≤ 1− 1
2pη . Specifically,

if ϕ = 1 − 1
2pη , it turns out that Pmix(Z

η
sp,i = −y|Y η = y) = Pmix(Z

η
sp,i = y|Y η = y) = 1

2 , which implies that spurious
features turns out to be random and the mixture distribution becomes perfectly debiased. If ϕ = 0, the mixture distribution
boils down into a biased distribution as similarly defined in the environment e ∈ Etrain.

The prediction from the classifier Oη is defined as similar to Oe in (5). Then in order to derive a concentration inequality
of ℓη(π), we derive a conditional expectation of Oη as done in (10):

EXη,m

[
Oη
∣∣ Y η = 1

]
= EXη,m

[
w̃invminvZ

η
inv +

D∑
i=1

w̃sp,imsp,iZ
η
sp,i

∣∣∣ Y η = 1
]

= EXη,m

[
w̃invminv +

D∑
i=1

w̃sp,imsp,iZ
η
sp,i

∣∣∣ Y η = 1
]
.

(19)

Then, with the definition in (15), the second term in the above conditional expectation of (19) is defined as follows:

EXη,m

[D∑
i=1

w̃sp,imsp,iZ
η
sp,i | Y

η = 1
]

=

D∑
i=1

w̃sp,iπsp,i

(
ϕEdebias[Z

η
sp,i | Y

η = 1] + (1− ϕ)Ebias[Z
η
sp,i | Y

η = 1]
)

=

D∑
i=1

w̃sp,iπsp,i

(
ϕ · (−1) + (1− ϕ)(2pη − 1)

)
=

D∑
i=1

w̃sp,iπsp,i

(
2pη(1− ϕ)− 1

)
,

(20)

where Edebias and Ebias in the first equality denote the conditional expectation with respect to distribution P η
debias and P η

bias

in (16) and (17), respectively. Plugging (20) into (19), we get

EXη,m
[
Oη
∣∣ Y η = 1

]
= w̃invπinv +

D∑
i=1

(
2pη(1− ϕ)− 1

)
w̃sp,iπsp,i. (21)

Then we can derive the upper bound of ℓη(π) = P (Oη < 0 | Y η = 1) similarly to (11):

P
(
Oη < 0

∣∣ Y η = 1
)
≤ P

(∣∣∣Oη − EXη,m

[
Oη
] ∣∣∣ > EXη,m

[
Oη
] ∣∣ Y η = 1

)
≤ 2 exp

(
−

2EXη,m

[
Oη
∣∣ Y η = 1

]2
w̃2

inv + 4
∑D

i=1 w̃
2
sp,i

)

≤ 2 exp

(
−

2
(
w̃invπinv +

∑D
i=1

(
2pη(1− ϕ)− 1

)
w̃sp,iπsp,i

)2
w̃2

inv + 4
∑D

i=1 w̃
2
sp,i

)

≤ 2 exp
(
−

2
(
πinv +

∑D
i=1(2p

η(1− ϕ)− 1)αiπsp,i

)2
1 +

∑D
i=1 4α

2
i

)
,

(22)

where the first inequality is obtained by Hoeffding’s inequality, and second inequality is from (21). The denominator is
obtained as same as in (11), since w̃invminvZ

η
inv ∈ {0, w̃inv} and w̃sp,imsp,iZ

η
sp,i ∈ {−w̃sp,i, 0, w̃sp,i} ∀i as-is. If we

plug-in the upper bound value of ϕ = 1− 1
2pη obtained from (18) into (22), it boils down into the test bound in (2).

1.3. Dynamics of the weight ratio

We omit an index of environment e in the proposition below for notational simplicity.

Proposition 1. Consider a binary classification problem of linear classifier fw under exponential loss. Let (X, Y) ∼ P ,
where each input random variable X and the corresponding label Y is generated by

X =

(
Zinv

Zsp

)
, Y = Zinv,

where Zsp = (2z − 1)Zinv for a random variable z ∈ {0, 1}D which is chosen from multivariate Bernoulli distribution

(zi ∼ Bern(p)) with p > 1
2 , i.e., p denotes pe in the main paper. Let w =

(
winv

wsp

)
∈ RD+1 be the weight of the linear

classifier fw(x) = wTx. Assume that 0 < winv(0), i.e., winv is initialized with a positive value, and 0 < wsp,i(0) <
1
2 log

p
1−p . Then, after sufficient time of training, winv diverges to +∞ and wsp,i converges to 1

2 log
p

1−p , which means
αi :=

wsp,i

winv
converges to 0 for all i ∈ {1, 2, · · · , D}. More precisely,

log
(
ewinv(0) + [4p(1− p)]

D
2 t
)
≤ winv(t) ≤ log

(
ewinv(0) + t

D∏
i=1

(
pe−wsp,i(0) +

√
p(1− p)

))
.

However, for a fixed t < T , each αi is positive and its lower bound converges to some positive value.

Proof. In this proof, winv(t) denotes the invariant weight at time t, while we often omit the time t and interchangeably use
winv for notational simplicity, and likewise for wsp,i(t).

Note that the network output is given by

fw(x) = wTx

= Zinvwinv +ZT
spwsp

= Zinvwinv +

D∑
i=1

Zsp,iwsp,i.

The exponential loss is defined by

L(w) = E(X,Y)[e
−fw(X)Y]

= Ez

[
exp

(
−(Zinvwinv +

D∑
i=1

Zsp,iwsp,i)Zinv

)]
= Ez

[
exp(−winv − (2z1 − 1)wsp,1 − · · · − (2zD − 1)wsp,D)

]
= e−winv

D∏
i=1

Ez[e
−(2zi−1)wsp,i]

= e−winv

D∏
i=1

(pe−wsp,i + (1− p)ewsp,i).

Then, thanks to symmetry of wsp, it is enough to consider α :=
wsp,1

winv
. We first compute the gradient:

∂L

∂winv
= −e−winv

D∏
i=1

(pe−wsp,i + (1− p)ewsp,i)

∂L

∂wsp,1
= −e−winv (pe−wsp,1 − (1− p)ewsp,1)

D∏
i=2

(pe−wsp,i + (1− p)ewsp,i).

Since d
dtwinv = − ∂L

∂winv
, the dynamics is given by the following differnetial equations.

d

dt
winv = e−winv

D∏
i=1

(pe−wsp,i + (1− p)ewsp,i)

d

dt
wsp,1 = e−winv (pe−wsp,1 − (1− p)ewsp,1)

D∏
i=2

(pe−wsp,i + (1− p)ewsp,i).

First we show that winv(t) diverges to +∞ as t goes ∞. We show this by computing its lower bound.

d

dt
winv = e−winv

D∏
i=1

(pe−wsp,i + (1− p)ewsp,i)

≥ e−winv

D∏
i=1

(2
√
p(1− p))

= e−winv [4p(1− p)]
D
2 ,

where the inequality is obtained by AM-GM inequality. This implies ewinvdwinv ≥ [4p(1− p)]
D
2 dt. Integrating both sides

from 0 to t, we get

ewinv(t) − ewinv(0) ≥ [4p(1− p)]
D
2 t

or

winv(t) ≥ log
(
ewinv(0) + [4p(1− p)]

D
2 t
)
, (23)

which shows that winv(t) diverges to +∞ as t → ∞. Note also that winv strictly increases since d
dtwinv > 0.

For wsp,i, d
dtwsp,i = 0 implies wsp,i converges to w∗

sp,i such that

pe−w∗
sp,i − (1− p)ew

∗
sp,i = 0,

namely, w∗
sp,i =

1
2 log

p
1−p .

As similar to winv , wsp,1 strictly increases if and only if wsp,1 < 1
2 log

p
1−p . Based on the assumptions that 0 < wsp,i(0) <

1
2 log

p
1−p , we conclude that wsp,1 monotonically converges to 1

2 log
p

1−p . As p goes to 1, 1
2 log

p
1−p is sufficiently large and

we can assume wsp,i(0) <
1
2 log

p
1−p .

Now, we fix 0 < t < T for given T and compute an upper bound of winv . Using wsp,i(t) <
1
2 log

p
1−p , we get

d

dt
winv = e−winv

D∏
i=1

(pe−wsp,i + (1− p)ewsp,i)

< e−winv

D∏
i=1

(
pe−wsp,i(0) + (1− p)

√
p

1− p

)

= e−winv

D∏
i=1

(
pe−wsp,i(0) +

√
p(1− p)

)
which implies

ewinvdwinv <

D∏
i=1

(
pe−wsp,i(0) +

√
p(1− p)

)
dt.

Integrating both sides from 0 to t, we get

winv(t) < log

(
ewinv(0) +

D∏
i=1

(
pe−wsp,i(0) +

√
p(1− p)

)
t

)
. (24)

Similarly, we compute a lower bound of wsp,1 on 0 < t < T . Before we start, note that winv(t) < winv(T) =: M from
monotonicity.

d

dt
wsp,1 = e−winv (pe−wsp,1 − (1− p)ewsp,1)

D∏
i=2

(pe−wsp,i + (1− p)ewsp,i)

> e−M (pe−wsp,1 − (1− p)ewsp,1)

D∏
i=2

(2
√
p(1− p))

= e−M [4p(1− p)]
D−1

2 (pe−wsp,1 − (1− p)ewsp,1)

induces

1

pe−wsp,1 − (1− p)ewsp,1
dwsp,1 > e−M [4p(1− p)]

D−1
2 dt.

Integrating both sides from 0 to t < T , we get[
1√

p(1− p)
tanh−1

(√
1− p

p
ewsp,1

)]t
0

> e−M [4p(1− p)]
D−1

2 t

or

wsp,1(t) >
1

2
log

p

1− p
+ log tanh

(
tanh−1(

√
1− p

p
ewsp,1(0)) + e−M2D−1[p(1− p)]

D
2 t

)
. (25)

Combining (24) and (25), we conclude that

αp(t) =
wsp,1(t)

winv(t)
(26)

>

1
2 log

p
1−p + log tanh

(
tanh−1(

√
1−p
p ewsp,1(0)) + e−M2D−1[p(1− p)]

D
2 t
)

log
(
ewinv(0) + t

∏D
i=1

(
pe−wsp,i(0) +

√
p(1− p)

)) (27)

for 0 < t < T . Note that αp(t) is positive in 0 < t < T , since both wsp,1(t) and winv(t) is monotonically increasing in
0 < t < T , and 0 < wsp,1(0), winv(0) by assumptions.

The numerator becomes

1

2
log

p

1− p
+ log tanh

(
tanh−1(

√
1− p

p
ewsp,1(0)) + e−M2D−1[p(1− p)]

D
2 t

)
= log

[√
p

1− p
tanh

(
tanh−1(

√
1− p

p
ewsp,1(0)) + e−M2D−1[p(1− p)]

D
2 t

)]
= log

[√
p

1− p

(√
1− p

p
ewsp,1(0) + e−M2D−1[p(1− p)]

D
2 t sech2 c

)]
for some c such that

tanh−1(

√
1− p

p
ewsp,1(0)) < c < tanh−1(

√
1− p

p
ewsp,1(0)) + e−M2D−1[p(1− p)]

D
2 t.

We use f(x+ y) = f(x) + yf ′(c) by the Mean Value Theorem (MVT) at the last line.
Notably, if we take a limit p → 1, the numerator becomes

lim
p→1

log
[
ewsp,1(0) + e−M2D−1p

D+1
2 (1− p)

D−1
2 t sech2 c

]
= wsp,1(0).

Similarly, the denominator becomes

lim
p→1

log

(
ewinv(0) + t

D∏
i=1

(
pe−wsp,i(0) +

√
p(1− p)

))

= log

(
ewinv(0) + t

D∏
i=1

e−wsp,i(0)

)

= log

(
ewinv(0) + t exp

(
−

D∑
i=1

wsp,i(0)

))
Therefore, for a fixed 0 < t < T , we conclude that

lim
p→1

αp(t) = lim
p→1

wsp,1(t)

winv(t)

≥ wsp,1(0)

log
(
ewinv(0) + t exp

(
−
∑D

i=1 wsp,i(0)
))

>
wsp,1(0)

log(ewinv(0) + T exp
(
−
∑D

i=1 wsp,i(0)
)
)

≥ wsp,1(0)

log T + 1
T exp

(
winv(0) +

∑D
i=1 wsp,i(0)

)
−
∑D

i=1 wsp,i(0)

(28)

where we use the inequality log(x+ y) ≤ log x+ y
x in the last line.

The key insights from Proposition 1 can be summarized as follows:
(1) Weight ratio αi(t) converges to 0 as t → ∞.
(2) However, for a fixed t < T , αi(t) > 0.
(3) When t < T and p → 1, i.e., the environment is almost perfectly biased, the convergence rate of (1) is remarkably

slow as in (28). In other words, there exists c > 0 such that c
log t < αp(t) over 0 < t < T if p is sufficiently close to 1.

This results afford us intriguing perspective on the fundamental factors behind the biased classifiers. If we situate the
presented theoretical example in an ideal scenario in which infinitely many data and sufficient training time is provided,
our result (1) shows that the pretrained classifier becomes fully invariant to the spurious correlations. However, in practical
setting with finite training time and number of samples, our result (2) shows that the pretrained model inevitably rely on the
spuriously correlated features.

Figure 1. Implemented results of presented example.

Beyond theoretical results, we empirically observe that the weight
ratio αi of pretrained classifiers indeed increases as pe → 1. We sim-
ulate the example presented in section 3.2 of the main paper, where
the dimensionality D is set to 15, and probability pe varies from 0.6
(weakly biased) to 0.99 (severely biased). We train a linear classifier
for 500 epochs with batch size of 1024, and measure the unbiased
accuracy on test samples generated from environment e ∈ Etest. We
also measure weight ratio mean(w̃sp)/w̃inv , where mean(w̄sp) de-
notes the average of pretrained spurious weights {wsp,i}Di=1. To en-
able the end-to-end training, we use binary cross entropy loss instead
of exponential loss, with setting Y = {0, 1} instead of Y = {−1, 1}.
We do not consider pruning process in this implementation. Figure 1
shows that the weight ratio increases to 1 in average as pe → 1. It
implies that the spurious features Ze

sp participate almost equally to
the invariant feature Ze

inv in the presence of strong spurious correlations. In this worst case, it is frustratingly difficult to
discriminate weights necessary for OOD generalization in biased environment, resulting in the failure of learning optimal
pruning parameters. Simulation results are averaged on 15 different random seeds.

2. Example of geometrical misalignment

In this section, we present a simple example illustrating the potential adverse effect of spurious correlations on latent
representations. Consider independent arbitrary samples within the same class Xb

i ,X
b
j ∼ P b

Xb|Y b=y
and Xd ∼ P d

Xd|Y d=y

for a common y ∈ {−1, 1} and environments b, d where b ∈ Etrain and d ∈ Etest. Let W ∈ RQ×(D+1) be a weight matrix
representation of a linear mapping T : {−1, 1}D+1 → RQ which encodes the embedding vector of a given sample. We
denote such embedding as he = WXe for some e ∈ E . We assume that W is initialized as to be semi-orthogonal [4,12] for
simplicity. Then the following lemma reveals the geometrical misalignment of embeddings in the presence of strong spurious
correlations:

Lemma 1. Given y ∈ {−1, 1}, let hb
i ,h

b
j ,h

d be embeddings of Xb
i ,X

b
j ,X

d respectively. Then, the expected cosine
similarity between hb

i and hd is derived as:

E
[

⟨hb
i ,h

d⟩
∥hb

i∥ · ∥h
d∥

∣∣∣∣ Y b = y, Y d = y

]
=

1

D + 1
, (29)

while the expected cosine similarity between hb
i and hb

j is derived as:

E
[⟨hb

i ,h
b
j⟩

∥hb
i∥ · ∥h

b
j∥

∣∣∣∣ Y b = y

]
=

1 +D(2pb − 1)2

D + 1
, (30)

where pb is a probability parameter of Bernoulli distribution of i.i.d variable Zb
sp,i, similar to pe in the main paper.

Proof. Let Xe = V e
inv + V e

sp for the sample from an arbitrary environment e in general, where ve
inv,v

e
sp ∈ {−1, 1}D+1

are invariant and spurious component vector, respectively:

V e
inv,j =

{
Ze
inv, if j = 1

0, otherwise ,
(31)

V e
sp,j =

{
Ze
sp,j , if j = 2, . . . , D + 1

0, otherwise .
(32)

Thus, V e
inv and V e

sp are orthogonal. Given Y b = y and Y d = y for some y ∈ {−1, 1}, the cosine similarity between hb
i and

hd is expressed as follows:

E
[

⟨hb
i ,h

d⟩
∥hb

i∥∥h
d∥

∣∣∣∣ Y b = y, Y d = y

]
= E

[
⟨Xb

i ,W
TWXd⟩

∥hb
i∥∥h

d∥

∣∣∣∣ Y b = y, Y d = y

]
= E

[
⟨Xb

i ,X
d⟩

D + 1

∣∣∣∣ Y b = y, Y d = y

]
= E

[⟨V b
i,inv + V b

i,sp,V
d
inv + V d

sp⟩
D + 1

∣∣∣∣ Y b = y, Y d = y

]
=

1

D + 1
,

(33)

where V b
i,inv and V b

i,sp represent the invariant and spurious component vector of Xb
i , respectively, and the second equality

comes from the semi-orthogonality of W . The last equality comes from the orthogonality of spurious component vector
from different environment b ∈ Etrain and d ∈ Etest.

On the other hand, the expected cosine similarity between two arbitrary embeddings hb
i and hb

j from the biased environ-
ment b is expressed as follows:

E
[⟨hb

i ,h
b
j⟩

∥hb
i∥∥h

b
j∥

∣∣∣∣ Y b = y

]
= E

[⟨V b
i,inv + V b

i,sp,V
b
j,inv + V b

j,sp⟩
D + 1

∣∣∣∣ Y e = y

]
=

1 +D(2pb − 1)2

D + 1
,

(34)

where the last equality comes from the expectation of product of independent Bernoulli variables.

The gap between (29) and (30) unveils the imbalance of distance between same-class embeddings from different envi-
ronments on the unit hypersphere; embeddings from the training environment are more closely aligned to other embeddings
from the same environment than embeddings from test environment at initial even when all samples are generated within the
same class. While the Lemma 1 is only applicable to the initialized W before training, such imbalance may be worsened if
W learns to project the samples on the high-dimensional subspace where most of its basis are independent to the invariant
features. This sparks interests in designing weight pruning masks to aggregate the representations from same-class samples
all together. Indeed, in this simple example, we can address this misalignment by masking out every weight in W except the
first column, which is associated with the invariant feature.

From this point of view, we revisit the proposed alignment loss in main paper:

ℓalign

(
{xi, yi}|S|

i=1; W̃ ,Θ
)
= Em∼G(Θ)

[
ℓcon(Sbc, S;m⊙ W̃) + ℓcon(Sba, Sbc;m⊙ W̃)

]
, (35)

where the first term reduces the gap between bias-conflicting samples and others, while the second term prevents bias-aligned
samples from being aligned too close each other. In other words, the first term is aimed at increasing the cosine similarity
between representations of same-class samples with different spurious attributes, as hb

i and hd in this example. The second
term serves as a regularizer that pulls apart same-class bias-aligned representations, as hb

i and hb
j in this example. Thus

we can leverage abundant bias-aligned samples as negatives regardless of their class in second term, while [16] limits the
negatives to samples with different target label but same bias label, which are often highly scarce in a biased dataset.

Figure 2. Analysis on the sparsity level. Bias ratio=1% for (a), (b). Color bar: log-scaled λℓ1 . Dotted line: ratio = 99%.

3. Additional results
Comparisons to the pruning baselines. Pruning (debiasing) appears to suffer from the generalization-efficiency tradeoff;

improving computational efficiency (OOD generalization) does not always guarantee improvement in OOD generalization
(efficiency). Unlike this, our framework reliably improves both generalization and efficiency as shown in Table 1. Note that
the standard pruning algorithms [14] fail to improve the unbiased accuracy in CIFAR10-C.

Table 1. Test (unbiased) accuracy (%) on standard and corrupted CIFAR10 (Bias ratio=5%). Pruning ratio=90.0% for GraSP and
(92.4%, 90.4%) for DCWP on (CIFAR10, CIFAR10-C).

Dataset Full-size GraSP [14] DCWP

CIFAR10 86.76 85.64 86.32

CIFAR10-C 45.66 44.21 60.24

Analysis of sparsity level. One may concern that a trade-off between performance and sparsity may exist. For example,
networks with mild sparsity may still be over-parameterized and thus not fully debiased, whereas networks with high spar-
sity do not have enough capacity to preserve the averaged accuracy. In order to investigate the trade-off, we measure the
unbiased accuracy by explicitly controlling the pruning ratio with varying λℓ1 . Figure 2 shows that (1) the trade-off between
performance and sparsity does exist, while (2) the proposed framework is reasonably tolerant to high sparsity in terms of
generalization. We conjecture that such tolerance is owing to the prioritized elimination of spurious weights; the networks
can be compressed to a significant extent without hurting the generalization after pruning out the spurious weights.

4. Experimental setup
4.1. Datasets

We mainly follow [7,9] to evaluate our framework on Color-MNIST (CMNIST), Corrupted CIFAR-10 (CIFAR10-C) and
Biased FFHQ (BFFHQ) as presented in Figure 3.

CMNIST. We first consider the prediction task of digit class which is spuriously correlated to the pre-assigned color,
following the existing works [1, 7, 9, 13]. Each digit is colored with certain type of color, following [7, 9]. The ratio of bias-
conflicting samples, i.e., bias ratio, is varied in range of {0.5%, 1.0%, 2.0%, 5.0%}, where the exact number of (bias-aligned,
bias-conflicting) samples is set to: (54,751, 249)-0.5%, (54,509, 491)-1%, (54,014, 986)-2%, and (52,551, 2,449)-5%.

CIFAR10-C. Each sample in this dataset is generated by corrupting original samples in CIFAR-10 with cer-
tain types of corruption. Among 15 different corruptions introduced in the original paper [2], we select 10
types which are Brightness, Contrast, Gaussian Noise, Frost, Elastic Transform, Gaussian
Blur, Defocus Blur, Impulse Noise, Saturate, and Pixelate, following [7]. Each of these corruption is
spuriously correlated to the object classes of CIFAR-10, which are Plane, Car, Bird, Cat, Deer, Dog, Frog,
Horse, Ship, and Truck. We use the samples corrupted in most severe level among five different severity, following [7].
The exact number of (bias-aligned, bias-conflicting) samples is set to: (44,832, 228)-0.5%, (44,527, 442)-1%, (44,145, 887)-
2%, and (42,820, 2,242)-5%.

BFFHQ. Each sample in this biased dataset are selected from Flickr-Faces-HQ (FFHQ) Dataset [5], where we conduct
binary classifications with considering (Age, Gender) as target and spuriously correlated attribute pair following [6, 7].
Specifically, majority of training images correspond to either young women (i.e., aged 10-29) or old men (i.e., aged 40-59).

Figure 3. Example images of datasets. The images above the dotted line denote the bias-aligned samples, while the ones below the dotted
line are the bias-conflicting samples. For CMNIST and CIFAR10-C, each column indicates each class. For BFFHQ, the group of three
columns indicates each class.

This dataset consists of 19,104 number of such bias-aligned samples and 96 number of bias-conflicting samples, i.e., old
women and young men.

CelebA. For CelebA, we consider (Blonde Hair, Male) as (target, spurious) attribute pair, following [3, 9, 10]. Pixel
resolutions and batch size are 256× 256 and 128, respectively. The exact number of samples for the prediction task follows
that from [3].

4.2. Simulation settings

Architecture details. We use a simple convolutional network with three convolution layers for CMNIST, with feature
map dimensions of 64, 128 and 256, each followed by a ReLU activation and a batch normalization layer following [15]. For
CIFAR10-C and BFFHQ, we use ResNet-18 with pretrained weights provided in PyTorch torchvision implementations.
Each convolutional network and ResNet-18 includes 1.3× 106 and 2.2× 107 number of parameters, respectively. We assign
a pruning parameter for each weight parameter except bias in deep networks. Each of pruning parameter is initialized with
value 1.5 so that the initial probability of preserving the corresponding weight is set to σ(1.5) ≈ 0.8 in default.

Training details. We first train bias-capturing networks using GCE loss (q=0.7) for (CMNIST, BFFHQ, CelebA), with
(2000, 10000, 10000) iterations, respectively. For CIFAR10-C, we use epoch-ensemble-based mining algorithms presented
in [17], which select samples cooperated with an ensemble of predictions at each epoch to prevent overfitting. We use b-c
score threshold τ = 0.8 and the confidence threshold η = 0.05 as suggested in the original paper.

Then, main networks are pretrained for 10000 iterations using an Adam optimizer with learning rates 0.01, 0.001, 0.001
and 0.0001 for CMNIST, CIFAR10-C, BFFHQ, and CelebA, respectively.

We train pruning parameters for 2000 iterations using a learning rate 0.01, upweighting hyperparameter λup = 80 and a
balancing hyperparameter λalign = 0.05 for each dataset. We use a Lagrangian multiplier λℓ1 = 10−8 for CMNIST, and
λℓ1 = 10−9 for CIFAR10-C, BFFHQ and CelebA. Specifically, we set λℓ1 by considering the size of deep networks, where
we found that the value within range O(0.1 ∗ n−1) serves as a good starting point where n is the number of parameters.

After pruning, we finetune the networks with decaying learning rate to 0.001 for CMNIST and 0.0005 for others. We use
λalign = 0.05 consistently. Then, we use λup = 80 for BFFHQ, λup = 20 for CelebA, and λup = {10, 30, 50, 80} for
CMNIST and CIFAR10-C with {0.5%, 1.0%, 2.0%, 5.0%} of bias ratio, respectively.

Considering the pruning as a strong regularization, we did not use additional capacity control techniques such as early
stopping or strong ℓ2 regularization presented in [8, 11].

Data augmentations. We did not use any kinds of data augmentations which may implicitly enforce networks to encode
invariances. For the BFFHQ and CelebA dataset, we only apply random horizontal flip. For the CIFAR10-C dataset, we take
32× 32 random crops from image padded by 4 pixels followed by random horizontal flip, following [9]. We do not use any

kinds of augmentations in CMNIST.
Baselines. We use the official implementations of Rebias, LfF, DisEnt and JTT released by authors, and reproduce EnD

and MRM by ourselves. For DisEnt, we use the official hyperparameter configurations provided in the original paper. We use
q = 0.7 for LfF as suggested by authors on every experiment. For Rebias, we use the official hyperparameter configurations
for CMNIST, and train for 200 epochs using Adam optimizer with learning rate 0.001 and RBF kernel radius of 1 for other
datasets. For MRM, we use λℓ1 of 10−8 for CMNIST following the original paper, and 10−9 for the others. For EnD, we set
the multipliers α for disentangling and β for entangling to 1.

References
[1] Hyojin Bahng, Sanghyuk Chun, Sangdoo Yun, Jaegul Choo, and Seong Joon Oh. Learning de-biased representations with biased

representations. In International Conference on Machine Learning, pages 528–539. PMLR, 2020. 10
[2] Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common corruptions and perturbations. arXiv

preprint arXiv:1903.12261, 2019. 10
[3] Youngkyu Hong and Eunho Yang. Unbiased classification through bias-contrastive and bias-balanced learning. Advances in Neural

Information Processing Systems, 34:26449–26461, 2021. 11
[4] Wei Hu, Lechao Xiao, and Jeffrey Pennington. Provable benefit of orthogonal initialization in optimizing deep linear networks. arXiv

preprint arXiv:2001.05992, 2020. 8
[5] Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative adversarial networks. In Proceedings

of the IEEE/CVF conference on computer vision and pattern recognition, pages 4401–4410, 2019. 10
[6] Eungyeup Kim, Jihyeon Lee, and Jaegul Choo. Biaswap: Removing dataset bias with bias-tailored swapping augmentation. In

Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 14992–15001, 2021. 10
[7] Jungsoo Lee, Eungyeup Kim, Juyoung Lee, Jihyeon Lee, and Jaegul Choo. Learning debiased representation via disentangled feature

augmentation. Advances in Neural Information Processing Systems, 34:25123–25133, 2021. 10
[8] Evan Z Liu, Behzad Haghgoo, Annie S Chen, Aditi Raghunathan, Pang Wei Koh, Shiori Sagawa, Percy Liang, and Chelsea Finn.

Just train twice: Improving group robustness without training group information. In International Conference on Machine Learning,
pages 6781–6792. PMLR, 2021. 11

[9] Junhyun Nam, Hyuntak Cha, Sungsoo Ahn, Jaeho Lee, and Jinwoo Shin. Learning from failure: De-biasing classifier from biased
classifier. Advances in Neural Information Processing Systems, 33:20673–20684, 2020. 10, 11

[10] Shiori Sagawa, Pang Wei Koh, Tatsunori B Hashimoto, and Percy Liang. Distributionally robust neural networks for group shifts:
On the importance of regularization for worst-case generalization. arXiv preprint arXiv:1911.08731, 2019. 11

[11] Shiori Sagawa, Aditi Raghunathan, Pang Wei Koh, and Percy Liang. An investigation of why overparameterization exacerbates
spurious correlations. In International Conference on Machine Learning, pages 8346–8356. PMLR, 2020. 11

[12] Andrew M Saxe, James L McClelland, and Surya Ganguli. Exact solutions to the nonlinear dynamics of learning in deep linear neural
networks. arXiv preprint arXiv:1312.6120, 2013. 8

[13] Enzo Tartaglione, Carlo Alberto Barbano, and Marco Grangetto. End: Entangling and disentangling deep representations for bias
correction. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 13508–13517, 2021. 10

[14] Chaoqi Wang, Guodong Zhang, and Roger Grosse. Picking winning tickets before training by preserving gradient flow. arXiv preprint
arXiv:2002.07376, 2020. 10

[15] Dinghuai Zhang, Kartik Ahuja, Yilun Xu, Yisen Wang, and Aaron Courville. Can subnetwork structure be the key to out-of-
distribution generalization? In International Conference on Machine Learning, pages 12356–12367. PMLR, 2021. 11

[16] Michael Zhang, Nimit S Sohoni, Hongyang R Zhang, Chelsea Finn, and Christopher Ré. Correct-n-contrast: A contrastive approach
for improving robustness to spurious correlations. arXiv preprint arXiv:2203.01517, 2022. 9

[17] Bowen Zhao, Chen Chen, Qi Ju, and Shutao Xia. Learning debiased models with dynamic gradient alignment and bias-conflicting
sample mining. arXiv preprint arXiv:2111.13108, 2021. 11

	. Proofs
	. Proof of Theorem 1
	. Proof of Theorem 2
	. Dynamics of the weight ratio

	. Example of geometrical misalignment
	. Additional results
	. Experimental setup
	. Datasets
	. Simulation settings

