
Appendix

A. Implementation detail
We implement our model ViPLO on top of the Pytorch

implementation 1 of SCG [4] . We also use the Pytorch
implementation 2 of CLIP [3] for the backbone network, in-
cluding modifications related to the proposed MOA module.
As mentioned in Sec. 3.3, we follow the training and infer-
ence procedure of SCG, such as appending the ground-truth
boxes during the training, applying non-maximum suppres-
sion (NMS) to the detection results, and computing the final
HOI scores for the focal loss. The final HOI scores are com-
puted as in SCG:

sk = (shi )
λ · (soj)λ · s̃k, (1)

where shi denotes the ith human detection score, soj denotes
the jth object detection score, and s̃k is the action classi-
fication score obtained from the representation of the HOI
triplet, including human node encoding, object node encod-
ing, and their edge encoding. These encodings are fused
with the MBF module in the SCG. We set λ to 1 in the train-
ing process and 2.8 in the inference process [4]. Finally, the
focal loss [1] is used as the multi-label classification loss to
train the possible interactions for each human-object pair as
follows.

FL(ŷ, y) =

{
−α(1− ŷ)γ log(ŷ), y = 1

−(1− α)ŷγ log(1− ŷ), y = 0
(2)

where y is the ground-truth label, ŷ is the final score for the
human-object pair, and α and γ are balancing parameters.
For focal loss, we set α to 0.5 and γ to 0.2 [4].

When using the Vision Transformer backbone, CLS to-
kens in which the MOA module is applied are mapped to
initialization of each node encoding with a two-layer MLP.
We use a three-layer MLP to construct an edge encoding
from human pose and spatial information. For extracting
the local feature of human, we draw the local region box for
each joint as 0.3 times the size of the human bbox height.
For the message function using human local node encod-
ings and object node encodings (Eq. 4 in the paper), we
concatenate two node encodings for the appearance feature
in the MBF module.

We use the AdamW [2] optimizer for training with an
initial learning rate of 10−4. For HICO-DET, we train the
VIPLO for 8 epochs with flip data augmentation and the
learning rate decay by a factor of 0.1. For V-COCO, we
train the model for 20 epochs with additional data aug-
mentations including color jittering, and decay the learn-
ing rate at the 10th epochs. For the convenience of the

1https : / / github . com / fredzzhang / spatially -
conditioned-graphs

2https://github.com/openai/CLIP

experiment, we did not use the pose information for the V-
COCO dataset. We perform all experiments with 3 NVIDIA
RTX A6000 GPUs using the Pytorch 1.9.0. framework. We
use batch size 11 per GPU for ViPLOs and 8 per GPU for
ViPLOl.

B. Efficient computation for MOA

The MOA module leads to a large performance incre-
ment in HOI detection, as shown in ablation studies in Sec.
4.3. But to use the MOA module, overlapped area S has to
be computed for each bounding box, which may be a com-
putational burden under the CPU operation. So we design
the entire process of computing S to be possible through
GPU operations. In specific, we compute the overlapped
area of each row patch and column patch, then obtain the
total overlapped area efficiently by multiplying these two.
Details can be found in Algorithm 1.

Algorithm 1 Torch-like pseudo-code for the MOA module

Input: box coordinate b, patch size p, attention map length
L

Output: attention mask A
1: width = int(

√
L)

2: A = zeros(1, L)
3: b = b/p
4: bint = [floor(b[0:2]), ceil(b[2:4])]
5: bwh = 1 - abs(bint − b)
6: a, b, c, d = bint

7: x, y, z, w = bwh

8: row = arange (width * b + a + 1, width * b + c + 1)
9: mask index = row.repeat(d - b) + arange(d - b).repeat

interleave(c - a) * width
10: area row = [x, ones(c - a - 2), w]
11: area column = [y, ones(d - b - 2), z]
12: mask area = area row * area column
13: A[0, mask index] = mask area

Another issue is that simply applying the MOA module
increases the amount of computation in proportion to the
number of regions in the given image. Hence, we propose
three methods for reducing computation: 1) we apply the
MOA module only in the last layer of ViT, which is suffi-
cient for a feature to be conditioned to a given region; 2) we
compute an attention score only for the CLS token, as the
CLS token serves as an extracted feature; and 3) we calcu-
late the dot product of the query and key only once, then add
log(S) for each copied attention map in Eq. 1 in the paper.
We apply three methods together to reduce the computa-
tional complexity of MOA. The computational complexity
of the original ViT layer is O(L2 ·C), and that of MOA ap-
plied the ViT layer is O(M ·L ·C+M ·C2), where L,C,M
denotes the number of patches, hidden dimension, and the
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Figure 1. Qualitative results of ViPLOl compared to the baseline
SCG. For each image, the prediction scores of ViPLOl and SCG
are shown (left: ViPLOl, right: SCG). The joint attention in Eq.2
in the paper is also visualized as a heatmap.

number of regions, respectively. The latter is linear to the
number of patches since the number of regions is limited by
non-maximum suppression (NMS), showing the efficiency
of the MOA module.

C. Qualitative Results
We show qualitative results of ViPLO compared to the

SCG in Fig. 1. We find that ViPLO can successfully de-
tect difficult interactions where the human and object are far
away (case 1). ViPLO also effectively detects interactions
focusing on specific human joint, such as ankle or wrist in
case of riding skateboard (case 2). Surprisingly, we find that
our model focuses on different joints when detecting inter-
action for different objects, even in the same image (case 3).
These results prove the effectiveness of ViPLO.
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