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A. Gradient Matching Ablation
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Figure 1. Gradient Cosine Similarity vs. Epochs.

In Figure 1, we monitor the alignment as the layer-wise average gradient Cosine Similarity (of LAcq and LRet) during the
course of the learning process for our method against PRE-DFKD [1] and MB-DFKD [2] on SVHN [17]. We observe a better
alignment retention of the gradients in our method.

B. Training Details:
B.1. Teacher Model Training Details

We train the ResNet-34 [8] teacher model for SVHN [17] and Tiny-ImageNet [13]. For SVHN we use the ResNet-34 model
definition made available by Binci et al.1 and for Tiny-ImageNet, we use the torchvision model definition from PyTorch2.
To train the teacher models we use SGD optimizer with an initial learning rate of 0.1, momentum of 0.9 and a weight-decay
of 5e-4, with a batch size of 128 for 400 epochs. Moreover, the learning rate is decayed at each iteration till 0, using cosine
annealing.

B.2. Student Model Training Details

For fair comparisons, we use the same Generator (G) network (shown in Table 1) for all the methods. Unless not explicitly
specified, for MB-DFKD [2] and our method (w/ Memory Buffer), we maintain a memory buffer of size 10 and update the
memory buffer at a frequency of f = 5, following previous work [2] (Algorithm 1). Also, for PRE-DFKD [1] and our method
(w/ Generative Replay), we use the same VAE architecture (as in Table 1 (Decoder) and 2 (Encoder)), from [1], to transfer
the pseudo samples as memory, and use the decoder part (same as the generator architecture in Table 1) to replay the learnt
distribution, with the VAE update parameters of f = 1 and sgpmax = 4 (Algorithm 2), following previous works [1]. For all the
methods and datasets, we use SGD optimizer with a momentum of 0.9 and a variable learning rate (αS ) with cosine annealing
starting from 1e-1 and annealing it at each epoch to 0 to optimize the student parameters (θS). For the one-step gradient

1https://github.com/kuluhan/PRE-DFKD
2https://pytorch.org/
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Algorithm 1: Proposed DFKD method, with Memory-Buffer replay.
Input: TθT , SθS , GθG ,M, Emax, I, g, αG , s, α, αS , f
Output: SθS
E = 1
while E ≤ Emax do

for I iterations do
for g iterations do

z ∼ N (0, I)
LG ← −D(T (GθG (z)),S(GθG (z))) + LP(GθG (z))
θG ← θG − αG∇θGLG

end
for s iterations do

z ∼ N (0, I)
x̂← GθG (z)
Compute LAcq(θS) using x̂
LS ← LAcq(θS)
ifM is not empty then

x̂m ∼M
θ′S ← θS − α∇LAcq(θS)
Compute LRet(θS) and LRet(θ

′
S) using x̂m

LS ← LS + LRet(θS) + LRet(θ
′
S)

end
θS ← θS − αS∇θSLS

end
end
if E mod f == 0 then

UpdateM with x∗
m, where, x∗

m ⊆ x̂
end
E ← E + 1

end

descent, we use a learning rate (α) of 0.9. Furthermore, we use Adam optimizer with a learning rate (αG) of 0.02 to optimize
the Generator (G). We test all our methods primarily on SVHN [17], CIFAR10 [12], CIFAR100 [12], and Tiny-ImageNet [13]
for 200, 200, 400, and 500 epochs (Emax), respectively.

B.3. GPU Memory Utilization

Moreover, our student update strategy brings in no practical memory overhead, compared to memory-based Adversarial
DFKD methods. We observe only a minimal increase in the GPU memory usage of few MBs (≈ 40 MB) due to the higher
order gradients computed as a part of the update on θS through θ′S . Moreover, we use a single gradient descent step to obtain
θ′S , which does not incur a large memory overhead. Thus, we do not opt for a first order approximation [18] of our method,
which is much prevalent in the meta-learning literature. Our experiments were run on a mixture of Nvidia RTX 2080Ti (11GB)
and RTX 3090 (24GB) GPUs.

C. Attribution of Existing Assets:
C.1. Code-Base:

The code-base used to experiment with proposed method is adapted from the GitHub1 repository of Binci et al. [1].

C.2. Pre Trained Teacher Model

The CIFAR10 pretrained [12] Teacher models of ResNet-34 and WRN-40-2 [22] are used used from the GitHub3 repository
made available by Fang et al. [6]. For the ResNet-34 Teacher model, pretrained on CIFAR100 [12], we used the model made

3https://github.com/zju-vipa/CMI

https://github.com/zju-vipa/CMI


Algorithm 2: Proposed DFKD method, with Generative replay.
Input: TθT , SθS , GθG ,M, Emax, I, g, αG , s, α, αS , f , sgpmax

Output: SθS
E = 1
while E ≤ Emax do

for I iterations do
for g iterations do

z ∼ N (0, I)
LG ← −D(T (GθG (z)),S(GθG (z))) + LP(GθG (z))
θG ← θG − αG∇θGLG

end
for s iterations do

z ∼ N (0, I)
x̂← GθG (z)
Compute LAcq(θS) using x̂
LS ← LAcq(θS)
x̂m ∼M
θ′S ← θS − α∇LAcq(θS)
Compute LRet(θS) and LRet(θ

′
S) using x̂m

LS ← LS + LRet(θS) + LRet(θ
′
S)

θS ← θS − αS∇θSLS

sgp = 0
if E mod f == 0 and sgp ≤ sgpmax then

TrainM with x̂m and x∗
m, where, x∗

m ⊆ x̂
sgp ← sgp + 1

end
end

end
E ← E + 1

end

Table 1. Generator Network (G) and Generative Replay (VAE [11]) Decoder Architecture.

Output Size Layers

1000 Noise (z ∼ N (0, I))
128× h/4× w/4 Linear, BatchNorm1D, Reshape
128× h/4× w/4 SpectralNorm (Conv (3× 3)), BatchNorm2D, LeakyReLU
128× h/2× w/2 UpSample (2×)
64× h/2× w/2 SpectralNorm (Conv (3× 3)), BatchNorm2D, LeakyReLU
64× h× w UpSample (2×)
3× h× w SpectralNorm (Conv (3× 3)), TanH, BatchNorm2D

available by Binci et al.1 [1].

D. Extended Results
In Figure 2, we visualize the Cumulative Mean Accuracies (%) across the training epochs with Buffer-based and Generative

Replay. The plots in Figure 2 complement the ones shown in Figure 5 of the main manuscript.

Based on the similarity of the Tiny-ImageNet teacher accuracy (TAcc) of the methods proposed and reported by Li et al. [14],
we compare our methods with the accuracies reported by them.



Table 2. Generative Replay (VAE [11]) Encoder Architecture.

Output Size Layers

3× h× w Input Example
64× h× w SpectralNorm(Conv (3× 3)), BatchNorm2D, LeakyReLU
128× h× w SpectralNorm(Conv (3× 3)), BatchNorm2D, LeakyReLU
128× h/2× w/2 DownSample (0.5×)
128× h/2× w/2 SpectralNorm(Conv (3× 3)), BatchNorm2D
128× h/4× w/4 DownSample (0.5×)
{1000, 1000} Reshape, Linear

Method Teacher Accuracy (%) (TAcc) Student Accuracy (%) (SAcc)

ADIa [21] 61.47 6.00
CMIa [6] 61.47 1.85

DAFLb [3] 60.83 35.46
DFADb [5] 60.83 19.60
DFQa [4] 61.47 41.30
CuDFKDa [14] 61.47 43.42

Ours-1 (w/ Memory Bank) 60.83 47.96
Ours-2 (w/ Generative Replay) 60.83 49.88

Table 3. Classification accuracy (in %) of the student trained using various DFKD methods on Tiny-ImageNet [13] with ResNet-34 [8] as the
teacher and ResNet-18 [8] as the student. a and b denote results obtained from [14] and our implementation, respectively.
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Figure 2. Cumulative Mean Accuracy (%) evolution of Wide-ResNet (WRN) [22]. The WRN-16-1 (top-row), and WRN-16-2 (bottom-row)
networks are distilled by a WRN-40-2 teacher network pre-trained on CIFAR10 (TAcc = 94.87%). Each column represent the learning
curves with the Buffer-based (with different memory buffer sizes) and Generative replay schemes. The proposed method is in Blue.

Lemma 1. If LRet has Lipschitz Hessian, i.e., ∥∇2LRet(θ1)−∇2LRet(θ2)∥ ≤ ρ∥θ1 − θ2∥ for some ρ > 0, then:

∇LRet(θ + ϕθ) = ∇LRet(θ) +∇2LRet(θ)ϕθ +O(∥ϕθ∥2).

For instance, when ϕθ = −α∇LAcq(θ), we have,

∇LRet(θ − α∇LAcq(θ)) =∇LRet(θ)− α∇2LRet(θ)∇LAcq(θ) +O(α2).

Proof. Applying the fundamental theorem of calculus to each component of LRet, we have:

∇LRet(θ + ϕθ) = ∇LRet(θ) +∇2LRet(θ)ϕθ +

∫ 1

k=0

(∇2LRet(θ + kϕθ)−∇2LRet(θ))ϕθdk. (1)



Omitting the subscript Ret for brevity,

=⇒ ∥∇L(θ + ϕθ)− (∇L(θ) +∇2L(θ)ϕθ)∥ = ∥
∫ 1

k=0

(∇2L(θ + kϕθ)−∇2L(θ))ϕθdk∥ (2)

=⇒ ∥∇L(θ + ϕθ)− (∇L(θ) +∇2L(θ)ϕθ)∥ ≤
∫ 1

k=0

∥(∇2L(θ + kϕθ)−∇2L(θ))ϕθ∥dk (3)

=⇒ ∥∇L(θ + ϕθ)− (∇L(θ) +∇2L(θ)ϕθ)∥ ≤
∫ 1

k=0

ρ∥kϕθ∥.∥ϕθ∥dk from ρ-Lipschitzness (4)

=⇒ ∥∇L(θ + ϕθ)− (∇L(θ) +∇2L(θ)ϕθ)∥ ≤
ρ

2
∥ϕθ∥2. (5)

Theorem 1. If θ′ = θ − α∇LAcq(θ), denotes the one step gradient descent on θ with the objective LAcq(θ), where α is a
scalar, and∇LAcq(θ) denotes the gradients of LAcq at θ, then:

∂LRet(θ
′)

∂θ
= ∇LRet(θ)− α∇2LRet(θ).∇LAcq(θ)− α∇2LAcq(θ).∇LRet(θ) +O(α2).

Proof. We have

∂LRet(θ
′)

∂θ
= ∇LRet(θ

′).
∂θ′

∂θ
(6)

=⇒ ∂LRet(θ
′)

∂θ
= ∇LRet(θ

′).
∂(θ − α∇LAcq(θ))

∂θ
(7)

=⇒ ∂LRet(θ
′)

∂θ
= ∇LRet(θ

′).(I − α∇2LAcq(θ)) (8)

Using Lemma 1, we substitute the value of∇LRet(θ
′), where θ′ = θ − α∇LAcq(θ) in (8), and obtain:

∂LRet(θ
′)

∂θ
=

=∇LRet(θ
′)︷ ︸︸ ︷

(∇LRet(θ) +∇2LRet(θ). (θ′ − θ)︸ ︷︷ ︸
=−α∇LAcq(θ)

+O(∥θ′ − θ∥2)︸ ︷︷ ︸
=O(α2)

) .(I − α∇2LAcq(θ)) (9)

=⇒ ∂LRet(θ
′)

∂θ
= ∇LRet(θ) +∇2LRet(θ). (θ′ − θ)︸ ︷︷ ︸

=−α∇LAcq(θ)

−α∇2LAcq(θ)∇LRet(θ) +O(α2) (10)

=⇒ ∂LRet(θ
′)

∂θ
= ∇LRet(θ)− α∇2LRet(θ)∇LAcq(θ)− α∇2LAcq(θ)∇LRet(θ) +O(α2) (11)

=⇒ ∂LRet(θ
′)

∂θ
= ∇LRet(θ)− α (

Hessian Product−1︷ ︸︸ ︷
∇2LRet(θ)∇LAcq −

Hessian Product−2︷ ︸︸ ︷
∇2LAcq∇LRet(θ))︸ ︷︷ ︸

Gradient Matching

+O.(α2) (12)

Note that, Lemma 1 provides an efficient way to obtain Hessian Product − 1 (highlighted in (12)) by computing the
gradient of LRet at θ′, thus, eradicating the time and memory overhead of explicitly computing Hessian Product− 1. Hence,
we have:

∂LRet(θ
′)

∂θ
= ∇LRet(θ)− α∇2LRet(θ)∇LAcq(θ)− α∇2LAcq∇LRet(θ) +O(α2). (13)

E. Relation to Continual-Learning and Adoption as Baselines
The fundamental objective of Continual-Learning (CL) is towards complete remembrance of previously acquired task

knowledge. Our setting avoids losing previous knowledge (retention) by constraining the deviation of the current learning from



the previous (Figure 1), by aligning them in the gradient space. It is important to note that the proposed method brings a unique
perspective and contribution in the context of DFKD, where discrete task boundaries do not exist like in CL. Therefore, it is
not straight forward to consider the methods such GEM [15], OML [10], and La-MAML [7] as baselines. GEM require task
descriptors for CL and are not learned in an online fashion. OML introduces a meta-objective for pre-training the network to
learn an optimal representation offline, which is subsequently frozen and used for CL. La-MAML uses a meta update strategy
to learn a sparse set of learning-rates (LRs), for each individual parameter with multiple inner loops, for the final outer-loop
update using those LRs. Nonetheless, the aforementioned methods do not specifically target DFKD.

F. Societal Impact
Similar to other DFKD methods, our method may be framed as an attack strategy to create clones of proprietary pre-trained

models that are accessible online [19]. However, this work makes no such efforts and does not support such practices.
Moreover, in the Undistillable or Nasty teacher setting [16, 20] the teacher network predictions are transformed to carry
out knowledge-distillation. Hence, the method suggested by Jandial et al. [9] can be used as an add-on in our framework.
Nonetheless, the presented method introduces no such objective for the teacher and will fail in the Undistillable teacher setting.
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