Sequential training of GANs against GAN-classifiers reveals correlated
“knowledge gaps’ present among independently trained GAN instances

Supplementary Material

1. Experiment details
1.1. Data

We use MNIST or FFHQ (depending on the DCGAN or
StyleGAN?2 setting) as the dataset of natural images in our
experiments. They both consist of 70,000 images. We use
80% of the data for training, and 20% for evaluation, i.e. we
use a fixed sample of 56,000 images for training in all the
experiments, and use the rest (14,000) for the evaluation of
classifiers. Note that this means that we use the same data of
natural images for training both GAN and GAN classifiers,
across all iterations. MNIST images are used as 28 x 28
grayscale images, and FFHQ images are used as 256 X 256
RGB images in all our experiments, for both training and
evaluation.

1.2. GAN Training

In the DCGAN setting, we trained a simplistic DCGAN
architecture well suited for the MNIST generation task (un-
conditional generation of all digits). Specifically, the genera-
tor network is modeled as follows: the random noise variable
of 100 dimensions is passed through a fully connected layer
of 12544 units, followed by 3 transposed convolution layers
of 128, 64 and 32 units, each with a kernel size of 5, before
the final transposed convolution unit for image output. All
hidden layers use batchnorm and the LeakyReLU activation.

For the second setting, we have used the unmodified
StyleGAN?2 as the GAN architecture of choice. StyleGAN2
is generally considered a SOTA GAN model, capable of
generating high-resolution, diverse, photo-realistic images,
especially of human faces. There are several components
and techniques used in its training framework that cause
the generated images to be of high quality and of greater
diversity. We specifically emphasize the additional inputs
to the generator network: a latent code being output by a
non-linear mapping network, and the random noise inputs,
both are fed to the individual layers of the generator network.
These techniques help the outputs capture the stochasticity
and variance present in the real world.

We use proprietary implementation of StyleGAN2, which
replicates the TensorFlow [1] implementation available on-
line (https://github.com/NVlabs/stylegan2). We did not

tweak any training parameters. For training a single GAN
instance, we use 8 NVIDIA Tesla P100 GPUs and each GAN
instance roughly required 1 week to train.

For the modified loss functions, we have used ¢ = 0.001
in all experiments in the StyleGAN?2 setting.

We have not used any pre-training for the GANs in the
main paper, we discuss this in Sec. 3.

1.3. Classifier Training

In the DCGAN setting, we use a basic CNN classifier
that performed well for this task. The classifier includes two
convolutional layers of 32 and 64 units, each with a kernel
size of 3. Both layers use ReLU activation and followed by
a max pooling of 2 in both dimensions. We train directly on
the grayscale images without any compression.

In the StyleGAN?2 setting, we have used ResNet-50 (ver-
sion 1.5), Inception-v3 and MobileNetV2 architectures when
training the classifiers. ResNet-50 is a high-performing CNN
architecture, particularly for image classification, and has
been shown to be effective for our task in previous research
[2, 7]. One of the distinguishing features of the ResNet-50
architecture is the use of residual connections, that generally
enables efficient learning by sharing information between the
hidden layers of a deep network. The two other CNN archi-
tectures in our study, Inception-v3 ([6]) and MobileNetV2
([5]), are chosen for their differences to ResNet-50. Like
ResNet-50, Inception-v3 is also a large CNN architecture
but it does not include residual connections and uses a differ-
ent "module"” that is repeated across the layers. We include
MobileNetV2 as a relatively lighter capacity architecture,
when compared to the other two architectures.

For the StyleGAN?2 classifiers, we use the publicly avail-
able implementations as part of the TensorFlow library.
When training the classifiers, we pass both the natural and
GAN-generated images through JPEG encoding. For each
classifier, we train using a single Tesla P100 GPU, and the
models roughly require 1 day to train. We do not use any
pre-training for the classifiers (unlike [7]), to avoid any exter-
nal influence in our experiments. We let the classifiers train
till they reach convergence, and did not need to finetune the
parameters for better performance.

We always train the classifiers on a balanced sample of

natural and generated images. Therefore, when we train a
classifier using a sample of 15 GAN instances, we train with
15 x 56000 generated and an equal number (15 x 56000)
of natural images, and use 0.5 as the classification decision
threshold. For this, the natural images are simply repeated
15 times to obtain a balanced training dataset. When evaluat-
ing the fooling ability of GAN generators, the held-out test
classifiers are trained using 10 held-out GAN instances.

2. Training a StyleGAN2 classifier in the pres-
ence of the “truncation trick”

The “truncation trick” is often used with StyleGAN2
(followed from the StyleGAN model) to avoid generating
unrealistic images. The approach shrinks the distribution,
in order to remove the regions of low density that might be
poorly represented by the GAN model. The expression used
to shrink the latent distribution is:

w=w+)(w—w) (1)

, where W is the the expected value of the mapped latent
space. Here, 1) is the coefficient of truncation: 1) = 1 implies
an absence of truncation and ¢y = 0 would correspond to
using the (fixed) expected value of the mapped latent space
as the latent input for sample generation. Typically [3, 4],
1) = 0.5 is effective in practice.

The truncation trick is used with StyleGAN?2 if sampling
realistic images, when trained with the FFHQ dataset. We
note that we also used this trick when we visually compared
the image quality. However, the use of this trick effectively
shrinks the diversity and brings the samples closer to the
“average face” that is learned by the model. And therefore,
we don’t use the truncation trick in our experiments, since
our study is directly measuring the extent of diversity present
in the GAN models.

In our experiments, we have also identified that the FID
is negatively affected when employing the truncation trick.
The FID (lower is better) for a sample of generated images
without truncation is ~ 37, whereas with truncation (¢) =
0.5) is ~ 81.

Since the diversity is significantly reduced if sampling
images with truncation, we have also identified that we do
not require multiple generators when training a classifier to
be able to achieve generalization: i.e., training a classifier us-
ing truncated samples from just one SG2 generator instance
suffices to detect truncated samples from an independent
SG2 generator instance.

Moreover, we note that by training a classifier which can
detect the full range of GAN-generated samples, we also
achieve a perfect accuracy when detecting samples generated
with the truncation trick.

3. Finetuning StyleGAN2 to transform to the
next iteration

The experiments mentioned in the paper train GANs from
scratch using the modified loss, with random weight initial-
ization. However, we acknowledge that training GANSs is an
expensive process, where modern GAN models like Style-
GAN? require weeks to train using multiple accelerators. To
this point, we have observed that we can “transform” a GAN
to the succeeding iteration by finetuning a pre-trained GAN,
and including a pre-trained detector in the finetuning steps.
For instance, using the same modification to the generator
loss, finetuning an ¢ = 0 iteration GAN results in a model
that exhibits the same artifacts as what’s present in an ¢ = 1
iteration GAN generator trained from scratch. We arrive at
this finding because they are both detected by a held-out
1 = 1 iteration detector and they both fool a held-out? = 0
iteration detector.

1.0

o
©

o0

—— [teration 0

—— lteration 1

=
=~

Classifier Accuracy

=y

650000 675000 700000
Training Steps

Figure 1. Finetuning GAN of iteration ; = 0. We finetune a fully
trained GAN of iteration 0, using the modified loss in the finetuning
steps. As depicted, a held-out classifier of iteration ¢ = 0 quickly
gets fooled, and a held-out classifier of iteration ¢ = 1 starts to
detect the artifacts that were not present before.

References

[1] Martin Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo,
Zhifeng Chen, Craig Citro, Greg S. Corrado, Andy Davis, Jef-
frey Dean, Matthieu Devin, Sanjay Ghemawat, lan Goodfellow,
Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia,
Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Lev-
enberg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek
Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit
Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent
Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,
Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and
Xiaoqgiang Zheng. TensorFlow: Large-Scale Machine Learn-
ing on Heterogeneous Systems, 2015. Software available from
tensorflow.org. 1

[2] Diego Gragnaniello, Davide Cozzolino, Francesco Marra, Gio-
vanni Poggi, and Luisa Verdoliva. Are GAN generated images
easy to detect? A critical analysis of the state-of-the-art. In
2021 IEEE International Conference on Multimedia and Expo
(ICME), pages 1-6. IEEE, 2021. 1

[3] Tero Karras, Samuli Laine, and Timo Aila. A style-based

(4]

(5]

[6

—_

(7]

generator architecture for generative adversarial networks. In
Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 4401-4410, 2019. 2

Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten,
Jaakko Lehtinen, and Timo Aila. Analyzing and improving the
image quality of stylegan. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages
8110-8119, 2020. 2

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-
moginov, and Liang-Chieh Chen. MobileNetV2: Inverted
Residuals and Linear Bottlenecks. In 2018 IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
4510-4520. IEEE, 2018. 1

C Szegedy, V Vanhoucke, S Ioffe, J Shlens, and ZB Wojna.
Rethinking the Inception Architecture for Computer Vision.
In 2016 IEEE Conference on Computer Vision and Pattern
Recognition, volume 2016, pages 2818-2826. IEEE, 2016. 1
Sheng-Yu Wang, Oliver Wang, Richard Zhang, Andrew Owens,
and Alexei A. Efros. CNN-Generated Images Are Surprisingly
Easy to Spot... for Now. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition (CVPR),
June 2020. 1

	. Experiment details
	. Data
	. GAN Training
	. Classifier Training

	. Training a StyleGAN2 classifier in the presence of the ``truncation trick''
	. Finetuning StyleGAN2 to transform to the next iteration

