
DeepLSD: Line Segment Detection and Refinement with Deep Image Gradients
Supplementary Material

In the following we provide additional results, insights
and visualizations for DeepLSD. Section A describes in
details our network architecture, Section B introduces ad-
ditional ablation studies and insights about our approach,
Section C provides an evaluation of visual localization with
points and lines on the full 7Scenes dataset, Section D gives
additional results about vanishing point estimation from the
detected line segments, Section E displays visualizations of
the 3D reconstruction, Section F highlights some limitations
of our method, and finally Section G offers examples of the
line detections.

A. Network Architecture
We provide more details about the network architecture

that we used to predict attraction fields. We use a simple
U-Net-like architecture [15] with several blocks of convolu-
tions, downsampling the initial image by a factor of 8 and
then upsampling it again to the initial resolution. Down-
sampling is performed through 3 successive 2× 2 average
poolings and upsampling is done with bilinear interpolation.
A skip connection is added before each downsampling layer
and is concatenated with the output of the corresponding
upsampling layer. Please refer to Figure 1 for the detailed
architecture. Each convolution layer is followed by ReLU
activation [1] and Batch Normalization [9], except the fi-
nal layer of each branch. The activations of the two output
branches are ReLU for the distance field and Sigmoid for
the angle field, without batch normalization.

B. Additional Ablation Studies
B.1. Generalization to Other Traditional Detectors

While DeepLSD is using LSD [22] as its base line de-
tector, our approach can be applied to any other traditional
detector leveraging the image gradient. We show here the
results of our method using ELSED [20] as base detector
(coined DeepELSED) and compare it to the original ELSED
in Table 1. We give the results for the raw lines without
any refinement on low-level line detection metrics on the
HPatches [2] and RDNIM [12] datasets. For both traditional
detectors LSD and ELSED, our deep version can improve
most metrics, thanks to the additional robustness brought by
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Struct Rep ↑ 0.314 0.367 0.240 0.263
LE ↓ 1.309 1.235 1.551 1.585

Orth Rep ↑ 0.468 0.485 0.465 0.478
LE ↓ 0.793 0.818 0.845 0.839

H estimation ↑ 0.697 0.705 0.617 0.624

# lines / img 492.6 486.2 425.4 419.4
Time [ms] ↓ 104 271 10 144

R
D
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Struct Rep ↑ 0.283 0.285 0.209 0.230
LE ↓ 2.039 1.733 2.303 2.258

Orth Rep ↑ 0.403 0.394 0.392 0.407
LE ↓ 1.369 1.098 1.248 1.361

H estimation ↑ 0.468 0.591 0.200 0.221

# lines / img 191.4 400.0 112.0 162
Time [ms] ↓ 34 96 3 88

Table 1. Generalization to other traditional detectors. Our
method is not limited to LSD [22], but can also be applied to the
ELSED [20] line detector for example. We show the comparison
between our approach and the original detectors on the HPatches [2]
and RDNIM [12] datasets. The first three columns are identical to
Table 1 in the main paper and our results are given without the final
line refinement.

the learned processing of the image.

B.2. Line Refinement on Traditional Methods

The proposed line refinement is mainly aiming at im-
proving the accuracy of previous deep line detectors and
DeepLSD, but one can wonder how it performs with tradi-
tional methods. When refining the lines output by LSD [22]
and ELSED [20] on the Wireframe dataset, we did not ob-
serve any improvement in low-level metrics, except for a
boost of performance in homography estimation for ELSED
(see Table 2). Traditional detectors are indeed already sub-
pixel accurate, so that the limited resolution of the distance
field is not high enough to refine the lines further. The drop
in performance in most metrics can be explained by the fact
that some lines detected by these methods are in areas with
high distance field values, so that these lines will rather drift
than being optimized correctly. However, relevant lines for
downstream tasks still seem to benefit from the refinement
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Figure 1. Network architecture. We use a standard UNet [15] architecture to predict the distance and angle fields.

Struct Orth H
estimation

# lines
/ img

Time
[ms] ↓

Rep ↑ LE ↓ Rep ↑ LE ↓

LSD
[22]

Baseline 0.386 0.456 0.647 0.12 0.998
352.1

23
Opt w/o VP 0.332 0.593 0.485 0.35 0.994 217
Opt w/ VP 0.332 0.589 0.494 0.325 0.994 545

ELSED
[20]

Baseline 0.185 1.238 0.564 0.36 0.926
178.2

3
Opt w/o VP 0.165 1.315 0.462 0.529 0.989 130
Opt w/ VP 0.164 1.313 0.474 0.502 0.989 397

Table 2. Line refinement of traditional methods on the Wire-
frame dataset [7]. The line refinement can be detrimental for
some outlier lines outside of the distance field, but it is still able
to improve the accuracy of most lines, as shown by the boost of
performance of ELSED in homography estimation.

as shown by the large boost in homography estimation for
ELSED.

B.3. Training Learned Baselines with our Supervi-
sion Strategy

In the main paper, we proposed an ablation study by re-
training the HAWP [23] detector with our ground truth (GT)
supervision. We provide here additional details and visu-
alizations of this ablation. Instead of taking our DeepLSD
approach of predicting the distance and angle fields and then
applying LSD on top of it, one could also extract lines from
the ground truth distance and angle fields, and then use these
lines to supervise any existing deep line detector. Figure 2
shows two examples of lines detected by the original HAWP,
the re-trained version using our GT lines, and DeepLSD. The
latter remains the most satisfactory one, and thus justifies our
approach of leveraging traditional line detectors instead of
end-to-end line detection. One reason for the lower quality

of the re-trained HAWP is that predicting the position of
endpoints with an additional attraction field is not suitable
for generic lines, as there are often too many of them in most
images. This approach works better for wireframe lines,
which are sparser and require less accuracy.

C. Additional Visual Localization Results
While the main paper focuses on the most challenging

scene of the 7Scenes dataset [19], Stairs, we provide here
the results of visual localization on the full dataset. As
described in the main paper, we detect keypoints with Su-
perPoint [5], match them with SuperGlue [18], and build on
top of hloc [16, 17] by adding line features and using them
in the pose estimation. The lines are again matched with the
SOLD2 [13] line detector. Table 3 displays the results of
several state-of-the-art line detectors in terms of translation
and rotation errors, as well as pose accuracy at a 5 cm / 5
degree threshold. DeepLSD obtains the best translation error
on all scenes, as well as the best metrics on the full dataset.
It can be noted that the improvement with respect to previ-
ous methods is rather small, due to the fact that 7Scenes is
already very saturated for visual localization.

D. Vanishing Point Estimation
Another common application for line segments is the

vanishing point (VP) estimation task. Given the line seg-
ments extracted by all the baselines and our method, we
apply multi-model fitting with Progressive-X [3] to find an
unconstrained number of (not necessarily orthogonal) VPs.
A minimal set of 2 lines provides a VP candidate, and its
consistency with the other lines is evaluated under the dVP



HAWP [23] Re-trained HAWP DeepLSD (Ours)

Figure 2. Re-training the HAWP detector [23] with the proposed pseudo ground truth lines. It yields unsatisfactory lines compared to
the DeepLSD approach, mainly because detecting line endpoints with a network prediction is challenging for high densities of line segments.

Point-only
SP [5] + SG [18] LSD [22] SOLD2 [13] TP-LSD [8] HAWPv3 [24] DeepLSD

Chess 2.4 / 0.81 / 94.5 2.4 / 0.82 / 94.4 2.4 / 0.81 / 94.0 2.4 / 0.80 / 94.4 2.4 / 0.80 / 94.5 2.4 / 0.82 / 94.5
Fire 1.9 / 0.76 / 96.4 1.7 / 0.73 / 96.5 1.8 / 0.76 / 95.9 1.8 / 0.76 / 95.8 1.9 / 0.77 / 97.1 1.7 / 0.70 / 96.7

Heads 1.1 / 0.74 / 99.0 1.1 / 0.74 / 99.4 1.1 / 0.76 / 99.3 1.1 / 0.73 / 99.5 1.1 / 0.80 / 99.2 1.0 / 0.73 / 99.5
Office 2.7 / 0.83 / 83.9 2.6 / 0.79 / 84.7 2.7 / 0.82 / 83.8 2.6 / 0.81 / 84.1 2.7 / 0.82 / 83.8 2.6 / 0.80 / 85.0

Pumpkin 4.0 / 1.05 / 62.0 4.0 / 1.04 / 62.1 4.1 / 1.07 / 60.7 4.0 / 1.04 / 62.6 4.0 / 1.04 / 62.3 3.9 / 1.02 / 62.2
Redkitchen 3.3 / 1.12 / 72.5 3.2 / 1.14 / 73.2 3.2 / 1.12 / 73.5 3.2 / 1.12 / 73.2 3.3 / 1.13 / 73.0 3.2 / 1.13 / 73.4

Stairs 4.7 / 1.25 / 53.4 3.4 / 0.94 / 73.2 3.5 / 0.96 / 71.5 3.4 / 0.93 / 72.1 3.4 / 0.98 / 74.2 3.1 / 0.85 / 76.6

Total 2.9 / 0.94 / 80.2 2.6 / 0.89 / 83.4 2.7 / 0.90 / 82.7 2.6 / 0.88 / 83.1 2.7 / 0.91 / 83.4 2.6 / 0.86 / 84.0

Table 3. Visual localization on the 7Scenes dataset. We report the translation error (in cm) / rotation error (in deg) / pose accuracy at a 5
cm / 5 deg threshold (in %) for the 7 scenes and the average score across all scenes.

metric [21]. This distance is computed as the average or-
thogonal distance between the endpoints of a line segment
and the infinite line going from the VP to the midpoint of
the segment. Based on the inlier lines, we do a weighted
least squares of the distance of all inliers to the VP, using the
line length as weight. We tune the parameters of the model
fitting algorithm for each method on a validation set.

We consider two benchmarks for vanishing point estima-

tion. YorkUrbanDB [4] pictures 102 images (51 for valida-
tion and 51 for test) of urban scenes. It offers 2 or 3 ground
truth VPs per image, ground truth lines, and the association
between VPs and lines. Additionally, we consider the ex-
tended set of VPs proposed in YUD+ [10], which labels up
to 8 VPs per image. The second dataset is adapted from
the NYU Depth dataset V2 [11] by [10], consisting of 1449
images (we keep the last 49 for parameter tuning), each
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Figure 3. VP consistency on the York Urban dataset [4].
DeepLSD ranks first on the 1 pixel threshold of VP consistency,
meaning that it leads to the largest number of highly accurate VPs.

YUD+ [4] NYU-VP [10, 11]

VP error ↓ AUC ↑ VP error ↓ AUC ↑

LSD [22] 2.05 82.9 (5.3) 3.29 68.6 (6.3)
ELSED [20] 1.88 81.9 (6.0) 3.24 68.3 (6.6)
HAWP [23] 1.76 84.2 (4.2) 3.35 68.0 (5.7)
TP-LSD [8] 1.73 85.1 (5.0) 3.35 68.0 (4.5)
SOLD2 [13] 2.59 75.4 (6.4) 4.46 56.9 (7.6)
DeepLSD (Ours) 1.63 85.6 (3.6) 3.24 69.1 (6.2)

Table 4. VP estimation on York Urban [4] and NYU-VP [10,11].
We compare DeepLSD with other baselines in terms of median VP
error and average recall AUC (and standard deviation). DeepLSD
obtains the best performance overall.

labelled with 1 to 8 VPs.
We consider three metrics. VP consistency counts the per-

centage of ground truth lines that are within a given threshold
of the predicted VPs [21]. Each set of ground truth lines
is associated to a single predicted VP and each VP can be
associated with at most one set of lines. We only show this
metric for YorkUrbanDB as NYU does not have manually
labelled lines. VP error measures how precise the estimated
VPs are in 3D. It is the angular error between the directions
in 3D of the ground truth VPs and the predicted ones. We
perform again a 1:1 matching to optimally assign the pre-
dicted VPs to the ground truth ones. For each experiment,
we run the VP detection algorithm 20 times and report the
median results. AUC represents the Area Under the Curve
(AUC) of the recall curve of the VPs, as described in [10].
We show the average AUC and its standard deviation over 5
runs.

Results are shown in Figure 3 and Table 4. The wireframe
methods TP-LSD [8] and HAWP [23] are particularly good
for vanishing point estimation, as they only detect structural
lines, which are usually the only relevant ones for VP esti-
mation. However, when evaluated on the more challenging
and non-Manhattan scenes of NYU-VP, the handcrafted line
detectors provide the best accuracy since they can detect
all types of lines. Our proposed DeepLSD outperforms all
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Figure 4. Effect of the line refinement on VP estimation on
YorkUrbanDB [4, 10]. The line optimization improves the VP
consistency and error of most deep methods.

baselines in terms of VP error and AUC, and obtains the
most consistent lines with the GT VPs at small thresholds in
Figure 3.

We additionally study the effect of refinement on the VP
estimation task in Figure 4. We show again the difference
in VP consistency on the YorkUrbanDB dataset [4] and
VP error on YUD+ [10], with the optimization objective
including VPs. Except for HAWP, all methods benefit from
the refinement, showing that our refinement can improve the
lines as much as their associated VPs.

E. Line 3D Reconstruction
We show here in Figure 5 a qualitative comparison of the

3D line reconstructions of our lines and some baselines for
the first 4 scenes of the Hypersim dataset [14]. TP-LSD [8]
can reconstruct fewer lines as it is trained on wireframe
lines only and cannot recover subtle details of the scene.
While LSD [22] is usually the traditional detector being used
for 3D reconstruction [6], the reconstructions produced by
DeepLSD are overall more complete and the lines are cleaner
compared to the LSD reconstruction. In addition, LSD has
a tendency to break segments on higher resolution images,
while DeepLSD will detect longer and cleaner lines. Thus,
it is easy to merge all lines of a track into a nice long 3D
line for DeepLSD, while LSD will generate a collection of
dissociated small segments along the 3D line.

F. Limitations
Even though DeepLSD can produce repeatable and accu-

rate lines by taking advantage of the benefits of both tradi-
tional and learned methods, it still suffers from a few limita-
tions:

• The current approach of running a deep network, fol-
lowed by handcrafted heuristics and line optimization is
not fully differentiable. Making the full pipeline differ-
entiable would mean making LSD differentiable, which
is unclear how to do it. We plan to investigate this
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Figure 5. Line 3D reconstruction on Hypersim [14]. We leverage the line 3D mapping software Line3D++ [6] on the first 4 scenes of
Hypersim [14]. DeepLSD produces more complete and accurate reconstructions than all baselines.

further in the future, as an end-to-end pipeline would
certainly provide better training signals to the deep net-
work processing the image.

• The generation of the pseudo ground truth lines is still
limited by the performance of LSD [22]. If a line is
almost never detected by LSD during homography adap-
tation, it will most likely not be detected in the ground
truth attraction field. Similarly, a noisy but repeatable
line will be kept in the pseudo ground truth. One way
to overcome this issue could be to leverage the trained
DeepLSD to re-generate a new pseudo ground truth
with less noise, as was done in SuperPoint [5].

• In spite of our efforts to make the pseudo ground truth
as clean as possible, there is always a trade-off between
detecting all low-contrast lines and avoiding to detect
noisy lines in the background. For example, DeepLSD
misses some good lines at the bottom right of the image
in the 5th row of Figure 6 and is also detecting some
noisy lines in the sky of the image in the 7th row. We
can influence this trade-off in two ways. First, by tuning
the aggregation of the attraction field when generating
the ground truth. We currently take the median value
of the distance and angle fields, but one could also take
a given percentile, to allow more or less outlier values.
Second, one can enforce more or less constraints to



the distance field for background areas. Enforcing a
high distance field for pixels far away from the ground
truth lines will reduce the number of noisy lines in
the background, but will also ignore the lines with low
contrast. The parameters proposed in this paper are the
ones visually yielding the best trade-off between the
two.

• Though the input image is processed through a deep
network, there is still no proper semantic understanding
of the detected lines, so that DeepLSD will detect any
kind of lines. Depending on the application, one could
imagine adding some semantic filtering in the ground
truth generation to keep only a specific kind of lines
(e.g. avoiding lines in the sky or on dynamic objects
such as humans).

• The proposed line refinement is for now rather slow, es-
pecially when it is applied to other deep line detectors,
as it requires running two networks. However, we be-
lieve that it is still valuable for applications that can run
offline and that require high precision, such as for 3D
reconstruction. Our current implementation can also
certainly be optimized, and our network compressed to
run on embedded devices, without sacrificing too much
performance.

G. Additional Visualizations

We provide a visual comparison of our method and the
other baselines for line detection in Figure 6. We first show
line detection examples from the YorkUrbanDB dataset [4],
picturing indoor and outdoor urban scenes. DeepLSD offers
more complete and accurate lines than its competitors. We
also compare our method to the other line detectors on some
images of the Day-Night Image Matching dataset [25], where
DeepLSD provides more lines than the other baselines in
challenging scenarios such as night time, over-exposition
and low image quality.
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Figure 6. Visual comparison of line detectors. First five rows: the lines of DeepLSD (here, without line refinement) are more complete
and accurate in urban scenarios (images from the YorkUrbanDB dataset [4]). Last three rows: when employed in challenging scenarios
such as by night, over-exposition and low image quality, DeepLSD can detect more relevant lines than the other baselines (images from the
Day-Night Image Matching (DNIM) dataset [25]).


