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1. Implementation Details

1.1. CLIPPING Initialization

We initialize the vison encoder MobileViT-v2 by pre-
training it on the imageNet21k dataset. The initial parame-
ters of the text encoder are a copy of the CLIP’s text en-
coder, and the temporal Transformer is initialized in the
same way as in CLIP4clip. The rest of the parameters, e.g.,
the linear projections in SAB KD, are initialized randomly
from the Gaussian distribution N (0, 1).

1.2. CLIPPING Training Settings

The text encoder is fine-tuned with a small learning rate
(1e− 7) from the beginning. The learning rates of the other
parts are initialized by 1e − 5 and decay according to the
cosine schedule. The whole KD is optimized by Adam with
a batch size of 64 for 36 epochs. From the 1st epoch to the
5th epoch, the weights for SAB KD and CM KD are set
to 0 (δ = 0 and γ = 0), and then they are added during
the 6th epoch to the 36th epoch. During the last 30 epochs,
the learning rates are re-initialized by 1e − 5 and re-decay
for all the parts except for the text encoder. When SAB
KD and CM KD are added, we set δ = 1 and γ = 0.125.
For the whole training period, we set the balance weights
α and β to 1. In our SAB KD, we choose 4 MobileViT-v2
(student) layers (layer2, layer3, layer4 and layer5) and
12 CLIP (teacher) layers (all the 12 Transformer layers in
ViT-B-32). Note that the previous TAB KD [1] in Table 4
is also trained with the same selected layers. In our experi-
ments, the masks are calculated through Eq. 7 with n0 = 2,
m0 = 4, n1 = 3 and m1 = 9. A softmax function is added
to normalize the similarity matrix along the first dimension
both in the training and inference.

1.3. Details about KL Divergence.

In our experiments, all the input and target for KL Di-
vergence loss (DKL) are float tensors, and the loss expects
an input in the log-space and a normalized target to avoid
underflow issues. Take the Eq. 5 for example, both Z ′

i
S

and Z ′
i
T are 768 × 12 tensors, and we calculate the loss as

DKL(logsoftmax(Z
′
i
S), softmax(Z ′

i
T )).

1.4. CLIPPING Algorithm

Algorithm CLIPPING
Input: The training dataset D = {(vj , tj)}Nj=1; the pre-

trained teacher model with parameters θt; the student model
with parameters θs; i denotes the training epoch. i = 1 at
the beginning.

Output: A trained student model.
1: while i > 36 do
2: Sample a mini-batch B from D.
3: Forward B into θt and θs to obtain the features

LayerS , ZS
i , Z ′

i
S , LayerT , ZT

i and Z ′
i
T .

4: Reshape LayerS and LayerT according to Fig. 3
to obtain L̃ayerS and L̃ayerT .

5: Calculate the similarity matrix W̃ = σ(L̃ayerT ×
(L̃ayerS)⊤ ◦Mask), where Mask is calculated by Eq. 7.

6: Align the video-caption distributions as Eq. 9 and
Eq. 12.

7: Update the parameters θs by backward propagating
the gradients of the loss in Eq. 15.

8: i = i+ 1.
9: end while
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2. More Results

2.1. Different Students

Besides MobileViT-v2, we also use other models as the
student in CLIPPING, which are EfficientNet-b0 [5] and
EfficientFormer-L1 [4]. Table 6 shows that CLIPPING with
each of these small models as the student outperformers all
the prepared models in Table 1 of the paper, indicating that
it is a general KD method.

Vison Encoder t2vR@1 v2tR@1

EfficientNet-b0 39.3(88.3%) 38.9(92.2%)
EfficientFormer-L1 40.5(91.0%) 39.8(94.3%)

MobileVITv2 40.7(91.5%) 40.2(95.3%)

Table 6. CLIPPING with different students.

2.2. Masking

In Fig. 8, we show the effect of the masking. It can be
seen that CLIPPING with the masking reaches the highest
accuracy at the 36th epoch, while CLIPPING without the
masking needs to be trained with more epochs for better
accuracy. It verifies that the masking is able to speed up the
training procedure.

2.3. CLIPPING for Other Tasks

We also apply our CLIIPING method for other tasks,
including the image classification and video recognition.
For the image classification task, we compare our SAB KD
with TAB KD for EfficientFormer on the ImageNet dataset.
From Table 7, we can see that our SAB outperforms TAB.
For video recognition, we first train the CLIP-based model
and frozen it as teacher. Then we distil a small MobileViT-
v2-based model by our CLIPPING (for cross-modal KD,
we use the text prompts, such as “this is label, a video of
action” and “human action of label”, for video classifica-
tion). Table 8 shows the video recognition results on Ki-
netic 400. Compared with the state-of-the-art methods, our
method shows the highest accuracies with lowest flops.

Methods EfficientFormer [4] TAB Our
Accuracy 79.2 80.0 ± 0.2 81.1 ± 0.2

Table 7. Results on ImageNet.

Methods Flops Acc
X3D-M [2] 19.4 76.0

MoViNet [3] 56.9 78.2
X3D-XL [2] 150 79.1

Our 16.8 80.0

Table 8. Comparison with the SOTA on the Kinetic400 dataset.

Figure 8. Convergence comparison with and without the masking.

3. More Visualizations

3.1. SAB Property

We give two more examples to show the SAB property
(Fig. 9). Both of them show that the student’s feature pat-
terns of linear combinations are very similar to the teacher’s
features, which verifies that the teacher’s knowledge is fully
absorbed by the student.

3.2. TAB KD vs. SAB KD

To verify the advantage of our SAB KD, we show the
linear combinations’ results of SAB KD and TAB KD in
Fig. 10. For SAB KD, we directly use the results in Fig. 9.
For TAB KD, from the KD equation in Fig. 1(b) (similar
to Eq. 2), we obtain LT

i , i = 1, 2, ...,M , represented by
LS
j , i = 1, 2, ..., N (similar to Eq. 3). Then we visualize the

features LT
i , i = 1, 2, ...,M and LS

j , i = 1, 2, ..., N as for
SAB KD in Fig. 10(b). It can be seen that TAB KD is not
equivalent to our SAB KD and does not have the property
of the student as the base of the teacher.
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Figure 9. More examples to demonstrate that the teacher’s features are the linear combinations of the student features.

Figure 10. Examples of the linear combinations of the student’s features that are trained with SAB KD (ours) and TAB KD [1].
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