
OpenScene: 3D Scene Understanding with Open Vocabularies
—Supplementary Material—

Songyou Peng1,2,3 Kyle Genova1 Chiyu “Max” Jiang4 Andrea Tagliasacchi1,5

Marc Pollefeys2 Thomas Funkhouser1
1 Google Research 2 ETH Zurich 3 MPI for Intelligent Systems, Tübingen 4 Waymo LLC 5 Simon Fraser University

pengsongyou.github.io/openscene

In this supplementary document, we first provide im-
plementation details in Sec. 1. Next, we supply additional
investigation of our methods in Sec. 2. Full results of open-
vocabulary object retrieval experiments are shown in Sec. 3.
More results of open-vocabulary scene exploration results
can be found in Sec. 4.

1. Implementation Details

3D Distillation. We implement our pipeline in Py-
Torch [10]. To distill E3D, we use Adam [6] as the op-
timizer with an initial learning rate of 1e−4 and train for
100 epochs. For MinkowskiNet we use a voxel size of 2cm
for ScanNet and Matterport3D experiments, and 5cm for
nuScenes. For indoor datasets, we input all points of a scene
to the 3D backbone to have the full contexts, but for the dis-
tillation loss (Eq. 2) in the paper we only supervise with
20K uniformly sampled point features at every iteration due
to the memory constraints. For nuScenes, we input all Lidar
points within the half-second segments, and only train with
point features at the last time stamp. We use a batch size
of 8 for ScanNet and Matterport3D with a single NVIDIA
A100 (40G). For nuScenes, we use a batch size of 16 with 4
A100 GPUs. It takes around 24 hours to train, and 0.1 sec-
onds for inference. Moreover, for all dataset we only take in
the 3D point position as input to the MinkowskiNet during
distillation.

More Details of Feature Fusion. For Matterport3D and
nuScenes, we use all images of each scene for fusion, while
for ScanNet, we sample 1 out of every 20 video frames.

As for the occlusion test, for dataset like ScanNet and
Matterport3D where the depth map is provided for each
RGB image, we do occlusion test to guarantee that a pixel
is only paired with a visible surface point. For every surface
point, we first find its corresponding pixel in an image, and
we can obtain the distance between that pixel and 3D point.
The 3D points and pixel are only paired when the differ-
ence between the distance and the depth value of that pixel

is smaller than a threshold σ. The threshold σ is propor-
tional to the depth value D. We use σ = 0.2D for ScanNet
due to the highly noisy depths and σ = 0.02D for Matter-
port. For pixels with “invalid” regions of the depth map, we
do not project their features to 3D points.

For nuScenes Lidar points, since no depth images are
provided, no occlusion test is conducted, and we only
use the synchronized images and the corresponding Lidar
points on the last timestamp of a 0.5 second segment.

Our nuScenes Evaluation. Unlike ScanNet and Matter-
port where each 3D surface point usually having multi-
ple corresponding images, in nuScenes most Lidar points
only have one corresponding view, maximum two views at
the same time stamp. Therefore, we directly project the
single pixel feature to most Lidar points, and use average
pooling when there are 2 views. There are 16 classes in
the nuScenes lidarseg benchmark, and some of these class
names are ambiguous. Since our method can take in arbi-
trary text prompts, we can pre-define some non-ambiguous
classes names for each class, and then map the predictions
from these non-ambiguous classes back to the 16 classes.
The pre-defined classes names are listed in Table 1.

MSeg [7] Voting. MSeg supports a unified taxonomy of
194 classes. We use their official image semantic segmen-
tation code1 and their pretrained MSeg-3m-1080p model.
MSeg already provided the mapping from some of 194
classes to 20 ScanNet classes, so we directly use the map-
ping. For Matterport3D, we simply add the mapping from
“ceiling” in the MSeg labelset. As for nuScenes, we man-
ually define the mapping from MSeg to nuScenes 16 la-
belsets. However, for the “construction vehicles”, “traffic
cone”, and ’other flat’, there is no mapping at all, so we set
them to unknown.

As for the majority voting for MSeg multi-view predic-
tions, what we do is the following. Given a surface point
and its corresponding multi-view MSeg semantic segmen-

1https://github.com/mseg-dataset/mseg-semantic

1

https://pengsongyou.github.io/openscene
https://github.com/mseg-dataset/mseg-semantic


nuScenes 16 labels Our pre-defined labels

barrier barrier, barricade
bicycle bicycle
bus bus
car car
construction vehicle bulldozer, excavator, concrete

mixer, crane, dump truck
motorcycle motorcycle
pedestrian pedestrian, person
traffic cone traffic cone
trailer trailer, semi trailer, cargo con-

tainer, shipping container, freight
container

truck truck
driveable surface road
other flat curb, traffic island, traffic median
sidewalk sidewalk
terrain grass, grassland, lawn, meadow,

turf, sod
manmade building, wall, pole, awning
vegetation tree, trunk, tree trunk, bush, shrub,

plant, flower, woods

Table 1. Label Mappings for nuScenes 16 Classes. Here we list
the total 43 pre-defined non-ambiguous class names corresponding
to the 16 nuScenes classes.

3D-only model 2D-3D ensemble model

Evaluation Datasets ScanNet20 Matterport40 ScanNet20 Matterport40

mIoU (%) mAcc (%) mIoU (%) mAcc (%)
Distill w/ ScanNet images 46.1 37.6 47.7 46.4
Distill w/ Matterport images 38.0 47.1 47.1 50.9

Table 2. Domain Transfer with Open Vocabularies.. These re-
sults show that it is possible to apply our models trained on Scan-
Net [2] to a novel 3D semantic segmentation task with a different
labelset in Matterport3D [1], and vice versa. Since our trained
models are task-agnostic (they predict only CLIP features), they
can be applied to arbitrary label sets without retraining.

tation, we take the class in the majority of views as the vot-
ing results for this point. If there are two classes and only
two views, we directly flip the coin to decide point labels.

Simple Prompt Engineering. Given a set of text prompts,
we use a simple prompt engineering trick before extract
CLIP text features. For each object class “XX” (except for
“other”) we modify the text prompts to “a XX in a scene”,
for instance “a chair in a scene”. With such a simple modifi-
cation, we observe +2.3 mIoU performance boost with our
LSeg ensemble model for ScanNet evaluation. We apply
the trick for all our benchmark comparison experiments.

2. Additional Analysis

Can we transfer to another dataset with different la-
belsets? Here we investigate the ability of our trained
models to handle domain transfer between 3D segmentation
benchmarks with different labelsets. We train on one dataset

Random Median Mean

mIoU 38.2 40.1 41.4
mAcc 60.1 62.2 63.6

Table 3. Ablation on Multi-view Fusion Strategy. We report
mIoU and mAcc on ScanNet [2] with our OpenSeg feature fusion.

(e.g., ScanNet20) and then test on another (e.g., Matter-
port40) without any retraining (Table 2). Since our trained
model is task agnostic (it predicts only CLIP features), it
does not over-fit to the classes of the training set, and thus
can transfer to other datasets with different classes directly.
Doing the same using a fully-supervised approach would re-
quire a sophisticated domain-transfer algorithm (e.g., [3]).

Ablation on multi-view fusion strategy. We ablate differ-
ent multi-view feature fusion strategies in Table 3. Random
means that having multiple features corresponding to one
surface point, we randomly assign one feature to the 3D
point. For Median, we take the feature that has the smallest
Euclidean distance in the feature space to all other features.
As can be seen, the simple average pooling yields the best
results, and we use it for all our experiments.

Visualization of our 2D-3D ensemble model. In Fig. 1
we study our ensemble model on how to select 2D and 3D
features for prediction on a Matterport3D house based on
different labelsets. First, we can notice that our ensem-
ble model uses 3D features for those large areas like floors
and walls, while 2D features are preferrable for smaller ob-
jects. Second, when comparing the feature selections us-
ing 21 and 160 classes, we can see that when the number
of classes increases, our ensemble model selects more 2D
features for the segmentation. The possible reason is that
2D image features can better understand those fine-grained
concept than purely from 3D point clouds. For example,
on the bottom-right there is a pool table there. When using
21 class labels, it is segmented as a table, so 3D features
are preferrable. When using 160 class labels for 2D-3D en-
semble, it is much easier to understand the concept of “pool
table” using 2D images than 3D point clouds.

Definition of Zero-Shot Learning (ZSL). The terminol-
ogy for ZSL is ambiguous in the literature. In a theoret-
ical ZSL system, there should be no training data of any
kind from seen classes. However, almost all real-world
ZSL systems utilize general-purpose feature extractors pre-
trained for proxy tasks on large datasets. For example,
3DGenZ [9] proposes a ZSL variant utilizing image features
pretrained on ImageNet (see section 4.5 in their paper),
while OpenSeg [4], LSeg [8], CLIP [11], and ALIGN [5]
propose ZSL methods trained on alt-text, as we also do. The
authors of those papers all describe their methods as ZSL.
We followed the same terminology as the latter one.



3. Full Results of Open-vocabulary Object Re-
trieval

The main paper demonstrates that open-vocabulary
search can be used to retrieval 3D points matching specific
queries from a database of 3D scenes (Figure 4 and Table
6 of the main paper). This section provides the full set of
details and results for that experiment.

To produce these results, our 2D-3D ensemble method
was used to produce features for every 3D mesh vertex in
the Matterport3D test set, using NY160 as the labelset for
ensembling. Then, for each given search query, the vertices
were sorted based on their cosine similarities to the CLIP
embedding of the text query to produce a ranked retrieval
list. To avoid flooding the top matches with nearby vertices,
we allow the retrieval list to have at most one match per
region (i.e., room, as defined by the Matterport3D dataset).

When selecting the queries to use in the experiment, we
limited our selections to raw category names provided with
the ground truth of the dataset. This allows us to reason
about how many examples exist in the test set so that we can
know how many matches to expect. Among those candidate
queries, we used two strategies to select ones to test: 1) we
chose several of the most specific categories (e.g., “yellow
egg-shaped vase”) in order to test the method on the most
difficult cases, and 2) we chose all raw categories with 15
ground truth examples in the entire Matterport3D dataset
that had clear definitions (which excepted “lounge chair,”
“side table,” and “office table”) in order to avoid bias in the
selection of queries (i.e., no cherry-picking).

Figures 2-5 show the ranked retrieval lists for these
queries (with the best match first). The number of expected
matches according to the dataset ground truth is listed in
parentheses under the query text on the left. The best match-
ing point is highlighted with a wireframe red sphere in
each image. Images with green/red borders indicate which
matches are correct/incorrect, where we say a match is in-
correct if it is lower in the ranked list than the last instance
in the ground truth. The images with gray borders are in-
cluded only to show the behavior of the algorithm for near
misses – they are not expected to be matches because their
rank is the list is beyond the number of examples labeled in
the ground truth.

From these results, we see that the algorithm is able to
retrieve very specific objects from the database with great
precision. For example, when queried with “yellow egg-
shaped vase,” its top match is indeed a match (which was
not labeled in the ground truth), and the following retrieval
results are tan vase, a pumpkin, and a white egg-shaped vase
with gold decorations. Similarly, when queried with “teddy
bear,” it retrieves two teddy bears (neither labeled in the
ground truth), a stuffed monkey, and a stuffed lion among
the top four matches. Among all the queries in all of the ex-

periments, the only false positive is where a bowl of stones
on a toilet is ranked 15th in the retrieval list for “telephone”
behind two of the ground truth instances, which are ranked
25th and 29th. In this example, all other 29 of the top 30
matches are correct (20 are shown in Figure 4).

These results suggest that the open-vocabulary features
computed with our 2D-3D ensemble algorithm are very ef-
fective at retrieving object types with specific names. Fur-
ther experiments are required to understand the limitations.

4. More Results of Open-vocabulary 3D Scene
Exploration

The main paper demonstrates that open-vocabulary
queries can be used to explore the content of 3D scenes via
text queries (Figures 1 and 6 of the main paper). This sec-
tion provides more examples demonstrating the power of
open-vocabulary exploration. Please see the supplemental
video for a live demo.

For each query, the user types a text string (e.g., “glass”),
it gets encoded with the pre-trained CLIP text encoder, we
compute the cosine similarity with features we’ve computed
for every 3D vertex, and then color the vertices by similarity
(yellow is high, green is middle, blue is low).

Figures 6-11 show results for a broad range of queries,
including ones that describe object categories in Fig. 6,
room types in Fig. 7, activities in Fig. 8, colors in Fig. 9,
materials in Fig. 10, and abstract concepts in Fig. 11.

Please note the power of using language models learned
via CLIP to reason about scene attributes and abstract con-
cepts that would be difficult to label in a supervised setting.
For example, searching for “store” highlights 3D points
mainly on closets and cabinets (middle-right of Fig. 8), and
searching for “cluttered” yields points in a particularly busy
closet (top-right of Fig. 11). These examples demonstrate
the power of the proposed approach for scene understand-
ing, which goes far beyond semantic segmentation.

Quantitative results on 3DSSG dataset [13]. In order to
quantitatively assess our performance in 3D scene explo-
ration, we conduct an experiment on the 3DSSG dataset.
3DSSG is a dataset extended from 3RScan [12] that has an-
notations in object-level material estimation. In Table 4,
we show results of predicting material classes for every 3D
point in the 3DSSG test set using variants of our approach
trained on ScanNet, and compare them to a fully-supervised
MinkowskiNet trained for this task on 3DSSG. The conclu-
sions are similar to the ones made in the paper: 1) 2D-3D
ensembling is our best variant, 2) it is worse than a fully-
supervised approach for classes with many training exam-
ples, and 3) it is better for classes with fewer examples.



mIoU mAcc

MinkowskiNet (Fully supervised) 23.5 30.6

Ours - 2D Fusion 18.6 31.9
Ours - 3D Model distilled on ScanNet 15.3 26.4
Ours - 2D-3D Ensemble 20.1 35.6

wooden padded glass metal ceramic cardboard plastic carpet stone concrete
0

20

40

60

80

m
Ac

c 
(%

)

95.2 94.4
85.9

26.9

3.3 0.0 0.0 0.0 0.0 0.0

67.2
58.2

76.2

8.8

24.3

68.5

19.6 19.2

0.1

14.2

Fully supervised
Ours - 2D-3D Ensemble

Table 4. Comparison on 3DSSG [13] in Material Estimation.
We report the average of 10 material classes in test set. Classes
are sorted left-to-right in the bar chart by the number of training
examples.

References
[1] Angel Chang, Angela Dai, Thomas Funkhouser, Maciej Hal-

ber, Matthias Niessner, Manolis Savva, Shuran Song, Andy
Zeng, and Yinda Zhang. Matterport3d: Learning from rgb-d
data in indoor environments. In 3DV, 2017. 2

[2] Angela Dai, Angel X Chang, Manolis Savva, Maciej Hal-
ber, Thomas Funkhouser, and Matthias Nießner. Scannet:
Richly-annotated 3d reconstructions of indoor scenes. In
CVPR, 2017. 2

[3] Hehe Fan, Xiaojun Chang, Wanyue Zhang, Yi Cheng, Ying
Sun, and Mohan Kankanhalli. Self-supervised global-local
structure modeling for point cloud domain adaptation with
reliable voted pseudo labels. In CVPR, 2022. 2

[4] Golnaz Ghiasi, Xiuye Gu, Yin Cui, and Tsung-Yi Lin. Open-
vocabulary image segmentation. In ECCV, 2022. 2

[5] Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh,
Hieu Pham, Quoc Le, Yun-Hsuan Sung, Zhen Li, and Tom
Duerig. Scaling up visual and vision-language representation
learning with noisy text supervision. In ICML, 2021. 2

[6] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. In ICLR, 2015. 1

[7] John Lambert, Zhuang Liu, Ozan Sener, James Hays, and
Vladlen Koltun. Mseg: A composite dataset for multi-
domain semantic segmentation. In CVPR, 2020. 1

[8] Boyi Li, Kilian Q Weinberger, Serge Belongie, Vladlen
Koltun, and René Ranftl. Language-driven semantic seg-
mentation. In ICLR, 2022. 2

[9] Björn Michele, Alexandre Boulch, Gilles Puy, Maxime
Bucher, and Renaud Marlet. Generative zero-shot learning
for semantic segmentation of 3d point clouds. In 3DV, 2021.
2

[10] Adam Paszke et al. Pytorch: An imperative style, high-
performance deep learning library. In NeurIPS, 2019. 1

[11] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learn-
ing transferable visual models from natural language super-
vision. In ICML, 2021. 2

[12] Johanna Wald, Armen Avetisyan, Nassir Navab, Federico
Tombari, and Matthias Nießner. Rio: 3d object instance
re-localization in changing indoor environments. In ICCV,
2019. 3

[13] Johanna Wald, Helisa Dhamo, Nassir Navab, and Federico
Tombari. Learning 3d semantic scene graphs from 3d indoor
reconstructions. In CVPR, 2020. 3, 4



Input 3D Geometry 160-class label sets

Our top 21-class semantic segmentation results 2D-3D features selected for 21-class segmentation

Our top 160-class semantic segmentation results 2D-3D features selected for 160-class segmentation

Figure 1. Study of Our 2D-3D Ensemble Model. We show semantic segmentation results and the feature selection of our ensemble
model on a Matterport3D house. We show the comparison between the 21-class and 160-class prediction. As can be seen, when the
number of classes increases, our ensemble model selects more 2D features for the segmentation. The reason can be that, when involving
more fine-grained or long-tailed classes, 2D image features can better understand those fine-grained concept than purely from 3D point
clouds. Points using 2D features for final segmentation are marked as red, while points with 3D features are marked as blue.



"yellow egg-
shaped vase" 

(0)

 
 

"toy giraffe" 
(1)

 
 

"teddy bear" 
(0)

 
 

"piano" 
(1)

 
 

"globe" 
(2)

 
 Figure 2. Example object retrieval results (page 1 of 4). The query text is in the left column, with the number of ground truth instances

in the Matterport test set listed in parentheses below. The images show top matching 3D points in the Matterport test set ranked from left to
right (note the red wireframe sphere around the matching point in each image). Correct matches are marked with green borders. The one
incorrect match is marked with a red border (in page 3 of 4). Others marked with gray borders are not wrong (since there are no further
objects matching the query according to the ground truth), but are shown as examples of near matches.



"fire
extinguisher" 

(3)

 
 

"exit sign" 
(5)

 
 

"antique
telephone" 

(4)

Figure 3. Example object retrieval results (page 2 of 4). See caption of Figure 2 for details.



 
 

"hat" 
(1)

 
 

"chest of
drawers"

Figure 4. Example object retrieval results (page 3 of 4). See caption of Figure 2 for details.



 
 

"bulletin board" 
(0)

 
 

"ball" 
(1)

Figure 5. Example object retrieval results (page 4 of 4). See caption of Figure 2 for details.



Input 3D Geometry “bed”

“chair” “table”

“lamp” “plant”

Figure 6. Open-Vocabulary Queries for Common Object Types.



Input 3D Geometry “bathroom”

“bedroom” “dining room”

“kitchen” “living room”

Figure 7. Open-Vocabulary Queries for Room Types.



Input 3D Geometry “cook”

“dine” “store”

“wash” “sleep”

Figure 8. Open-Vocabulary Queries for Activity Sites.



Input 3D Geometry “black”

“brown” “white”

“orange” “red”

Figure 9. Open-Vocabulary Queries for Colors.



Input 3D Geometry “fabric”

“metal” “wood”

Figure 10. Open-Vocabulary Queries for Materials.



Input 3D Geometry “cluttered”

“outdoor” “open”

“fire” “water”

Figure 11. Open-Vocabulary Queries for Abstract Concepts.


	. Implementation Details
	. Additional Analysis
	. Full Results of Open-vocabulary Object Retrieval
	. More Results of Open-vocabulary 3D Scene Exploration

