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A.1 Detailed Description of Benchmark
Datasets

We have used the following datasets in our experiments:

1. Synth90K [8]: This dataset contains 9 million syn-
thetic text instance images composed of 90k common
English words, which can simulate the distribution of
scene text images and replace the real data set for deep
learning algorithm training. Each image is annotated
with a ground-truth word.

2. SynthTex [4]: This dataset contains 800, 000 images
with 6 million synthetic text instances. Each image is
annotated with a ground-truth word.

3. IIIT5K [13]: This dataset contains 5000 text instance
images: 2000 for training and 3000 for testing. We use
the provided test set as one of the test sets for our ex-
periments and the provided train set for our validation.

4. SVT [23]: This dataset contains 350 images: 100 for
training and 250 for testing. We use the provided test
set as one of the test sets for our experiments and the
provided train set for our validation.

5. IC03 [12]: This dataset contains 509 images: 258 for
training and 251 for testing. After discarding images
that contain non-alphanumeric characters or less than
three characters, it contains 867 instances of cropped
text. We use the provided test set as one of the test sets
for our experiments and the provided train set for our
validation.

6. IC13 [10]: This dataset contains 561 images: 420 for
training and 141 for testing. After removing words
with non-alphanumeric characters, the IC13 dataset
contains 1051 cropped text instance images. We use
the provided test set as one of the test sets for our ex-
periments.

7. IC15 [9]: This dataset contains 1500 images: 1000 for
training and 500 for testing. We use the provided test
set as one of the test sets for our experiments and the
provided train set for our validation.

8. SVTP [18]: This dataset contains 238 images with 639
cropped text instances, which are mostly instances of
distorted perspectives. We use this dataset as a test set.

9. CUTE80 [19]: This dataset contains 80 high-
resolution images with 288 cropped text instances,
which are designed specifically for curvy text recog-
nition. We use this dataset as a test set.
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10. RCTW [20]: This dataset provides 12263 annotated
Chinese text images from natural scenes. And 44420
text lines are exported from the training set for our ex-
periment.

11. ReCTS [26]: This dataset provides 25000 annotated
street-view Chinese text images, mainly derived from
natural signboards. In the training set, 107657 cropped
text samples are utilized for experiments.

12. LSVT [21]: This dataset is a large-scale Chinese
and English scene text dataset, including 50000 full-
labeled samples and 400000 partial-labeled samples.
The full-labeled samples contain polygon boxes and
text labels, while the partial-labeled samples contain
only text instances. We only utilize the full-labeled
training set and crop 243063 text line images for ex-
periments.

13. ArT [3]: This dataset contains text samples of vari-
ous text layouts captured in a natural scene, such as
rotated text and curved text. We obtain 49951 cropped
text images from the training set and use them in our
experiments.

14. CTW [25]: This dataset contains annotated 30000
street view images with rich diversity. We crop 191364
text lines from both the training and testing sets for ex-
periments.

15. AISHELL-1 [2]: This dataset is split into a training
set, a development set, and a test set. The training set
contains 120098 utterances from 340 speakers; the de-
velopment set contains 14326 utterances from the 40
speakers; the Test set contains 7176 utterances from
20 speakers. And we use the training set for training,
the test set for testing, and the development set for val-
idation.

A.2 Construction of Hard and Easy Datasets

In this section, we provide a brief description of the
construction of hard and easy datasets used in the main
manuscript. As shown in Fig. 1, the visual feature quality of
samples in IC03 dataset is relatively higher than the samples
in SVTP dataset. The samples in IC03 are clear and easy
to be recognized, while the samples in SVTP are blurred,
noisy, incomplete, and thus relatively harder to be recog-
nized. Therefore, we take the IC03 as the easy dataset and
the SVTP as the hard dataset. And we construct a hardness-
adjustable mixed dataset, where samples are derived from
the easy and hard datasets, and thus the hardness is adjusted
by changing the proportion of samples from easy and hard
datasets.

(a) IC03 (b) SVTP

Figure 1. The illustration of IC03 and SVTP samples.

B. Comparison Techniques

In this section, we provide a brief description of the
methods and hyper-parameter settings used in training for
each comparison.
Brier Score [1] (BS): BS is defined as the squared loss be-
tween the one-hot target vector and the predicted probability
vector.
Label Smoothing [22] (LS): LS softens the hard one-hot
label with a smoothing parameter α as yLS

k = yk(1 −
α) + α/K, where yk denotes the one-hot label for the k-
th class and K is the class size. And we trained using
α ∈ {0.01, 0.05, 0.1}.
Focal Loss [14] (FL): FL is defined as FL = −(1 −
p(y|x))γ log p(y|x), where γ is a hyper-parameter. And we
trained using γ ∈ {1, 2, 3}.
Entropy Regularization [17] (ER): ER performs confi-
dence calibration by directly penalizing the entropy of the
predicted distribution, which is defined as ER = LCE −
βH(p(y|x)), where β is a hyper-parameter. And We trained
using β ∈ {0.05, 0.1, 0.2, 0.3, 0.4, 0.5} as performed in
[17].
Margin-based Label Smoothing [11] (MBLS): MBLS is
defined as: LCE+λ

∑
k max(0,maxj(lj)−lk−m), where λ

and m are hyper-parameters. We set m to 10 following [11],
and use λ ∈ {0.01, 0.05, 0.1, 0.2}.
Multi-class Difference in Confidence and Accuracy [5]
(MDCA): As for MDCA, we trained on the following
loss: FL + β · MDCA, where MDCA is defined in [5],
and β is a hyper-parameter. We trained varying β ∈
{1, 5, 10, 15, 20, 25} as performed in [5] and the γ used in
FL is in {1, 2, 3}.
Graduated Label Smoothing [24] (GLS): The smoothing
penalty α of GLS varies with the token’s confidence. We
set the α to 0.015 for tokens with confidence above 0.7,
0.0 for tokens with confidence below 0.3, and 0.005 for the
remaining tokens.
Context-Aware Selective Label Smoothing [7] (CASLS):
As for CASLS, we trained with α ∈ {0.01, 0.05, 0.1} fol-
lowing [7].
Perception and Semantic Aware Regularization (PSSR):
As for PSSR, we set εe and εh to 0.01 and 1, respectively,



and we trained with α ∈ {0.1, 0.5, 1.0}.
According to the ECE attained on the validation set, we

present the results of the models that perform the best with
each of the aforementioned techniques.

C. Evaluation Metrics
In this section, we provide a brief description of the eval-

uation metrics involved in the main manuscript: ECE, ACE,
and MCE. And the size of bins of ECE, ACE, and MCE is
set to 15 following [7].
Expected Calibration Error [15] (ECE): ECE approxi-
mates the expected absolute difference between the pre-
dicted confidence and the accuracy of model. Given a fi-
nite number N of samples, the ECE cannot be directly
computed using this definition. Instead, we partition the
confidence range [0, 1] into M equispaced bins, where ith

bin is the confidence interval in ( i−1
M , i

M ]. Let Bi rep-
resent the set of samples whose confidence falls into the
ith bin, and |Bi| denote the number of samples in ith

bin. Further, the accuracy of Bi is defined as Ai =
1

|Bi|
∑

j∈Bi
I(Ŷj = Yj), where I denotes indicator function.

Similarly, the average confidence Ci of Bi is calculated as
Ci = 1

|Bi|
∑

j∈Bi
P(Ŷj | Xj). And the ECE can be cal-

culated as the weighted average of the absolute difference
between the accuracy and confidence of each bin:

ECE =

M∑
i=1

Bi

N

∣∣∣Ai − Ci

∣∣∣. (1)

Adaptive ECE [16] (ACE): The vanilla ECE is uniform
bin width. In the case of a well-trained model, most of the
samples are located within the high confidence ranges and
thus dominate the value of the ECE. Therefore, we utilize
Adaptive ECE (ACE), where bin sizes are determined so
that samples are distributed equally throughout the bins:

ACE =

M∑
i=1

Bi

N

∣∣∣Ai − Ci

∣∣∣. (2)

where ∀i,j , |Bi| = |Bj |.
Maximum Calibration Error [5] (MCE): MCE is defined
as the maximum absolute difference between the average
accuracy and average confidence of each bin:

MCE = max
i∈1,...,M

∣∣Ai − Ci

∣∣. (3)

D. Confusion Matrices and Quantitative Met-
rics

The complete confusion matrices of the mispredictions
are shown in Fig. 2.
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Figure 2. The illustration of the complete confusion matrices of
the mispredictions.

Frequency and Average probability: And the calculation
of frequency (Fvis) and average probability (Pvis) men-
tioned in section 3.1 of the main manuscript are as follow:

Fvis(i− j) =
Nj

Ne
(4)

Pvis(i− j) =
1

Nj

Nj∑
n=1

p(yt = j|X) (5)

where Fvis(i−j) and Pvis(i−j) refers to the frequency and
average probability of a pair (i-j). Nj is the number of target
token class i incorrectly predicted to class j, and Ne is the
number of all incorrect predictions of class i. p(yt = j|X)
refers to the probability that the prediction is class j while
the target of yt is i.
Perplexity: Perplexity (PPL) is the exponentiation of the
average cross entropy of a corpus. The language mod-
els provide a probability distribution over full sentences or
texts, and this makes PPL a natural assessment metric for
these models. It is defined as:

PPL = exp(− 1

T

T∑
t=1

p(xt|x<t)) (6)

where x<t = [x0, · · · , xt−1].
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Figure 3. The reliability diagrams of the models calibrated with PSSR on English STR benchmark.
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Figure 4. The reliability diagrams of the models calibrated with PSSR on Chinese STR benchmark.
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Figure 5. The reliability diagrams of the models calibrated with
PSSR on the AISHELL-1 dataset of speech recognition task.
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Figure 6. The effect of α on PSSR on TRBA and TRBC.

E.1 Ablation Study on the α

In the proposed PSSR, the main hyper-parameter is the
calibration factor α, which controls the global calibration
strength of all the samples. Here we conduct experiments
by varying α from 0.2 to 1 to validate the effect of α for
calibration performance. Fig. 6 shows how calibration per-
formance is affected when we increase α in different model.
We observe a general trend that the calibration error first de-
creases as α increases, and it achieves the best performance
when α is close to 0.5 for TRBA and 0.4 for TRBC. As
we continue to increase α, the calibration error starts to in-

crease. This is because the calibration intensity is too high,
which already leads to underconfident.

E.2 Additional Results on SR
The complete results of the different calibration methods

on the speech recognition task on the AISHELL-1 dataset
are presented in Tab. 1 and Tab. 2. We can observe that, re-
gardless of the decoding schemes, the proposed PSSR out-
performs other competitive calibration methods on ECE,
ACE, and MCE metrics. This consolidates the thesis of
this paper and further demonstrates the generalization of the
proposed method.

Table 1. The calibration results of U2-Tfm on AISHELL-1. The
best method is highlighted in bold.

Method Acc ECE ACE MCE

NLL 58.81 22.75 22.75 50.85
BS 58.84 23.25 23.25 49.79
LS 58.67 4.32 4.49 12.12
FL 58.12 18.86 18.86 36.95
ER 58.61 13.40 13.40 29.34

MBLS 58.65 4.17 4.20 10.36
MDCA 58.15 19.02 19.02 37.30

GLS 59.18 3.36 3.33 10.45
CASLS 58.92 2.91 3.00 8.85
PSSR 57.36 2.21 2.06 7.01

E.3 Reliability Diagrams on STR and SR
benchmarks

In this section, we further investigate the calibration per-
formance of the proposed method with reliability diagrams,



Table 2. The calibration results of U2-CTC on AISHELL-1. The
best method is highlighted in bold.

Method Acc ECE ACE MCE

CTC 58.14 20.20 20.20 41.28
PSSR 57.44 2.47 2.35 3.82

whose results for STR and SR tasks of the different datasets
are shown in Fig. 3, Fig. 4, and Fig. 5. The reliability dia-
gram is the accuracy function of confidence. As for the per-
fectly calibrated model, the confidence of each bin ideally
matches the corresponding accuracy, and thus its reliability
diagram approximates a diagonal line (see the dashed line
in Fig. 3, Fig. 4, and Fig. 5). In contrast, the curve of under-
confident models lie mostly above the diagonal, while the
curve of overconfident models lie mostly below the diago-
nal.

E.4 Additional Results of Combining with
Temperature Scaling

In this section, we investigate the calibration perfor-
mance of combining temperature scaling with various train-
ing methods including ours (PSSR). In Tab. 3 and Tab. 4, we
show the results of TRBA and TRBC on the English and
Chinese STR benchmark. And we can observe that our pro-
posed method achieves the best performance across differ-
ent models and datasets. Furthermore, the optimal tempera-
ture value of our method is very close to 1, which indicates
that the models calibrated by our method are already nearly
perfectly calibrated.

E.5 Additional Results under Dataset Shift
Data distribution shift is prevalent in sequence recogni-

tion tasks. For example, the scene text recognition models
are usually trained on synthetic data, while applied to real
scene data. Therefore, maintaining performance even under
dataset shift is necessary for sequence recognition calibra-
tion methods.

To evaluate the calibration performance under dataset
shift, we construct four corruption version of English STR
benchmark following [6]. The [6] presents four types algo-
rithmically generated corruptions: noise, blur, weather, and
digital categories. And we select a representative corruption
from each of the above four types corruptions as follow:

• Speckle noise. Speckle noise is a type of additive
noise, and the noise added to a pixel tends to be larger
if the original pixel intensity is larger.

• Gaussian blur. Gaussian blur is a low-pass filter in
which a blurred pixel is the result of a weighted av-
erage of its neighbors, with more distant pixels being
given less weight in this average.

Table 3. ECE(%) for different methods with pre- and post-
temperature scaling. Optimal T is indicated in brackets. The best
method is highlighted in bold.

Method Dataset TRBA TRBC
PreT PosT PreT PosT

Uncalibrated

English

3.88 1.16 (1.3) 2.73 0.90 (1.2)
BS 3.44 0.98 (1.3) - -
LS 1.59 0.93 (1.1) - -
FL 1.36 1.36 (1.0) - -
ER 1.31 1.31 (1.0) - -

MBLS 1.34 1.34 (1.0) - -
MDCA 1.5 1.0 (1.1) - -

GLS 0.92 0.92 (1.0) - -
CASLS 1.02 1.02 (1.0) - -
PSSR 0.36 0.36 (1.0) 0.47 0.47 (1.0)

Uncalibrated

Chinese

10.78 6.83 (1.5) 15.02 3.72 (1.5)
BS 10.18 3.40 (1.3) - -
LS 1.25 1.25 (1.0) - -
FL 9.74 3.57 (1.3) - -
ER 3.42 3.42 (1.0) - -

MBLS 1.29 1.29 (1.0) - -
MDCA 9.97 4.15 (1.2) - -

GLS 1.31 1.31 (1.0) - -
CASLS 1.4 1.4 (1.0) - -
PSSR 0.72 0.72 (1.0) 0.79 0.79 (1.0)

Table 4. ACE(%) for different methods with pre- and post-
temperature scaling. Optimal T is indicated in brackets. The best
method is highlighted in bold.

Method Dataset TRBA TRBC
PreT PosT PreT PosT

Uncalibrated

English

3.88 0.81(1.3) 2.71 0.73(1.2)
BS 3.42 0.72(1.3) - -
LS 1.52 0.74(1.1) - -
FL 0.99 0.99(1.0) - -
ER 1.10 1.10(1.0) - -

MBLS 1.16 1.16(1.0) - -
MDCA 1.44 0.85(1.1) - -

GLS 0.90 0.90(1.0) - -
CASLS 0.98 0.98(1.0) - -
PSSR 0.28 0.28(1.0) 0.25 0.25(1.0)

Uncalibrated

Chinese

10.78 6.89(1.5) 15.02 3.73(1.5) (1.5)
BS 10.18 3.24(1.3) - -
LS 1.23 1.23(1.0) - -
FL 9.74 3.57(1.3) - -
ER 3.35 3.35(1.0) - -

MBLS 1.18 1.18(1.0) - -
MDCA 9.97 4.11(1.2) - -

GLS 1.27 1.27(1.0) - -
CASLS 1.40 1.40(1.0) - -
PSSR 0.63 0.63(1.0) 0.73 0.73(1.0)

• Spatter. Spatter can occlude the lens in the form of
rain or mud.

• Saturate. Saturate is common in edited images, in
which case the image becomes more or less colorful.



Table 5. The calibration results comparison of Uncalibrated, BS, LS, FL, ER, MBLS, MDCA, GLS, CASLS, and PSSR on the English
STR benchmark for four corruption. The accuracy and three calibration metrics: Acc(%), ECE(%), ACE(%) and MCE(%), are listed. The
best method is highlighted in bold.

Corruption Method TRBA MASTER TRBC
Acc ECE ACE MCE Acc ECE ACE MCE Acc ECE ACE MCE

Speckle Noise

Uncal. 65.71 3.80 3.85 15.83 63.45 3.37 3.37 13.43 65.63 1.51 1.46 7.59
LS 65.82 1.57 1.57 7.22 66.10 2.64 2.60 9.29 - - - -
FL 66.95 0.84 0.68 4.47 65.37 2.49 2.72 11.10 - - - -
ER 67.08 1.10 0.76 6.19 65.60 1.80 1.83 8.24 - - - -

MBLS 66.76 1.27 1.25 6.14 65.99 2.12 2.12 7.14 - - - -
MDCA 67.35 1.09 0.78 5.22 65.37 2.04 2.20 12.57 - - - -

GLS 67.31 3.03 2.95 6.11 63.23 3.26 3.26 14.26 - - - -
CASLS 67.48 1.36 1.22 6.64 66.07 1.72 1.49 11.20 - - - -
PSSR 67.01 0.64 0.66 5.84 65.89 1.24 1.31 5.34 66.45 1.19 0.54 9.26

Gaussian Blur

Uncal. 42.10 19.10 19.10 57.63 41.41 17.78 17.78 51.60 40.52 14.49 14.50 44.80
LS 43.18 12.73 12.74 40.55 42.48 10.19 10.19 26.99 - - - -
FL 42.78 9.71 9.84 38.07 42.03 6.85 6.99 24.82 - - - -
ER 43.14 3.32 3.17 9.49 43.27 3.54 3.69 11.06 - - - -

MBLS 43.47 14.11 14.14 43.52 42.64 10.84 10.84 30.77 - - - -
MDCA 43.17 13.91 13.91 44.24 41.95 8.06 8.16 28.27 - - - -

GLS 42.53 12.95 12.99 31.17 42.56 8.94 8.94 22.95 - - - -
CASLS 43.62 14.79 14.79 47.36 42.22 12.75 12.75 32.47 - - - -
PSSR 42.29 2.45 2.55 10.92 41.76 1.82 1.95 8.44 40.50 1.45 1.25 7.80

Spatter

Uncal. 59.91 4.12 4.12 11.79 59.80 6.54 6.54 16.09 58.12 2.23 1.89 6.41
LS 59.96 1.83 1.72 8.05 61.58 1.66 1.64 7.40 - - - -
FL 60.63 1.89 1.30 7.00 61.20 1.19 1.09 4.27 - - - -
ER 59.82 1.09 1.05 2.74 61.55 1.55 1.15 6.17 - - - -

MBLS 60.15 1.56 1.46 5.04 61.73 1.41 1.53 9.14 - - - -
MDCA 60.38 1.74 1.55 7.73 62.20 1.48 1.36 8.13 - - - -

GLS 60.02 2.60 2.06 7.82 62.85 2.13 1.93 4.60 - - - -
CASLS 60.55 1.28 1.00 5.32 62.01 1.07 1.20 4.51 - - - -
PSSR 61.68 1.06 0.86 4.89 62.57 0.95 0.88 3.01 58.82 1.99 1.87 5.13

Saturate

Uncal. 81.04 3.95 3.95 16.96 79.99 4.34 4.34 22.19 80.41 2.56 2.48 17.56
LS 81.03 2.00 1.79 9.25 80.82 1.58 1.59 5.58 - - - -
FL 81.52 1.09 0.87 4.59 79.93 1.25 0.65 7.23 - - - -
ER 81.56 1.20 0.85 8.19 80.84 1.00 0.67 4.68 - - - -

MBLS 81.24 1.20 1.10 7.28 80.78 1.15 0.96 6.52 - - - -
MDCA 81.97 1.16 0.91 4.51 80.69 1.12 0.88 6.97 - - - -

GLS 81.95 2.91 2.45 11.74 80.79 2.91 2.89 8.60 - - - -
CASLS 81.80 1.09 0.59 8.47 80.00 1.07 0.91 6.12 - - - -
PSSR 81.56 0.74 0.54 7.07 82.11 0.62 0.53 6.37 80.92 0.64 0.38 6.78

In Tab. 5, we show the complete experiment results of
data shift. It can be found that for ECE and ACE metrics,
our method shows superior performance compared to other
methods.
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