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Supplementary
In this supplementary material, we first provide details

about the training data preparation (Sec. 1.) as well as the
training process (Sec. 2.) In Sec. 3. we present experiments
exploring the accuracy-memory trade-off while we add fur-
ther ablative studies in Sec. 4. (and interpretation of the
ablative experiments of Sec. 5.1. in the main paper). In
Sec. 5 we investigate how nonlinear downprojection of fea-
tures would compare to our method. Sec. 6 provide more
insight regarding the convergence of the pose refinement.
Finally further visualizations may be found in Sec. 7 .

1. Training data preparation
Training SegLoc requires image-level information in the

form of set of anchor/positive/negatives images as well as
pixel-level information in the form of dense correspon-
dences. We train our models both on outdoor (ECMU Sea-
sons [1, 16]) and indoor environments (Indoor6 [5]). We
obtain the training data automatically using only the images
and GT poses provided in the official release of these dataset
without any additional ground truth information or manual
processing. Our approach to creating the training data is
described below and follows the approach proposed by [9].
ECMU. The Cross-Seasons Correspondence Dataset (CSC)
[9] was built upon the training slices (7-12 and 22-25) of the
Extended CMU (CMU) seasons [1,16] dataset and contains
image pairs with 2D-2D correspondences. Aiming to ex-
tend this dataset with more weather diversity and stronger
viewpoint changes, we proceed as follows on each train-
ing slice independently. We use the kapture pipeline [6]
to compute R2D2 [7] local descriptors in the images. Then
merging the image sets from various weather conditions, we
build a sparse SfM model with COLMAP [14] by triangu-
lating the 2D matches using the camera poses followed by
building a dense model using COLMAP’s multi-view stereo

pipeline [15]. The resulting dense point cloud is split into
sub-point clouds, each of them being associated to a spe-
cific weather condition (based on the condition labels of the
training images provided by the dataset). A 3D point is as-
sociated to a sub-point cloud if it is observed by at least
three images captured under that given weather condition.
Then, given a pair of sub-point clouds, 3D-3D correspon-
dences are established by finding mutual nearest neighbors.
Reprojecting these points into the images yields a list of
2D-2D correspondences for all image pairs that are part of
the sub-point clouds. Note that this 3D geometric matching
step does not provide any guarantee with regard to the valid-
ity of the correspondences. Therefore, we reject all 3D-3D
correspondences whose reprojection error is above 5 pixels.
Finally, image pairs with less than 500 correspondences are
eliminated.

Indoor6. For each Indoor6 scene, we apply the same
pipeline to compute images pairs and correspondences. The
only differences being that we build a sparse SfM model
from SIFT keypoints and we do not explicitly split the dense
point cloud depending on capture condition as the scene
is not evenly covered by each capture condition. Thus for
an image, the candidate image pair is searched among the
whole image set. Our global representations are spatially
pooled from the dense segmentation which is equivariant
wrt. viewpoint change. As the global representations must
show some level of invariance to viewpoint change it is
preferable that training image pairs have limited viewpoint
change and sufficient visual overlap Furthermore, enforcing
dense consistency only within a small region of the segmen-
tation would not providing sufficient learning signal.

Hence, the bounding box containing all 2D points within
the first image is reprojected in the second image and vice
versa. Overlap ratios between the reprojected bounding
boxes and images are computed and used to select pairs
with a sufficient correspondence coverage eliminating pairs
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below a threshold of 0.75. No constraint regarding the rela-
tive pose between images is enforced on ECMU. However,
on Indoor6 we discard pairs with relative rotation differ-
ence superior to 25 degrees. In Table A.1 we summarize
the number of retained pairs per cross-weather condition
on ECMU (summed over all training slices) or per scene
on Indoor6. The aim of including such a weather/capture
conditions diversity among the training data was to increase
the robustness of the learned representations. In addition,
in Figure A.1 we display example image pairs along with
their retained correspondences and the containing bounding
boxes showing the shared regions.
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Weather 1 Weather 2 Number of pairs
Overcast Foliage Cloudy Mixed Foliage 2167
Sunny Foliage Cloudy Foliage 1141

Overcast Mixed Foliage Overcast No Foliage 5040
Cloudy Low Sun No Foliage Snow 8120
Overcast Foliage Low Sun Foliage 1970
Sunny Foliage Low Sun Foliage 7400

Low Sun Mixed Foliage Sunny No Foliage 915
Overcast Foliage Sunny No Foliage 5520

In
do

or
6

Scene 1 4349
Scene 2a 7811
Scene 3 2166
Scene 4a 1491
Scene 5 3333
Scene 6 848

Table A.1. Training image pair distribution for the ECMU Seasons
and Indoor6 datasets.

2. Implementation details

Unsupervised initial clustering. The initial clustering is a
key element of the model because, as described in Sec. 3.
in the main paper, the derived prototypes play several roles
in our framework. Indeed, in the first epoch they are used
to derive the pseudo targets to train the classifiers, thus en-
suring a good initialization of the discriminative clustering
phase (see Sec. 3.1. of the main paper). Furthermore, the
prototypes help regularizing the training process by incor-
porating some initial prior semantic structure in the feature
space (see Sec. 3.2.). Therefore, to ensure a good initial-
ization, similar to [10], we consider an available pre-trained
semantic segmentation model and use it to extract and clus-
ter per-pixel features considering a random subset of the
training set (reference images). Using a pre-trained seg-
mentation model guarantees some meaningful features for
the clustering.

Concretely, we use the DPT-hybrid [12] model pre-
trained on the ADE20k segmentation dataset [19] as our
initial model. ADE20k is a semantic segmentation dataset
containing 150 classes covering both outdoor and indoor
scenes. In the initialization step, reference images are pro-
cessed by the initial SegLoc network (where the parameters
are initialized with the pre-trained DPT) and dense features
from the encoder are sampled and their associated ADE20k

Algorithm 1 The full model training.
Data: Image pairs Ia, Ib with 2D-2D correspondences

{xa
ul
, xb

vl
}

Initialize the encoder with DPT [12] pre-trained on
ADE20k

Generate the K prototypes ck
for epoch in range N epoch do

Sample features Fj
i from reference images Ij and com-

pute class predictions pj
i

Compute empirical distribution dp using σ(pj
i )

Update the prototypes ck with the features Fj
i and com-

pute the cluster concentrations ϕk

for each batch in epoch do
Network forward pass
if epoch==1 then

update qin with (4)
else

update qin with (2)
end
Update parameter network θ, ϕ minimizing the
overall loss
L = LCE + LCC + LPC + LPF + LMS

end
end

predictions are collected. We then group the dense features
according to their ADE20k predictions (removing ADE20k
classes with low population, corresponding in general to in-
door semantics when we process ECMU and outdoor se-
mantics when we process Indoor6). Within each remain-
ing ADE20k class we apply sub-clustering using either K-
means or Meanshift [4]. Our final set of initial prototypes
{c}Kk=1, is the union of these sub-cluster centers. Note
that we select the parameter k of K-means respectively the
Meanshift’s bandwidth such that the total number of proto-
types equals the desired granularity K of the segmentation.
This initial clustering step is applied independently on each
level l of the hierarchical decoder yielding four sets of initial
prototypes, which are then refined during training to lever-
age information from different spatial granularity.

Training details. As the segmentation backbone for our
model we rely on DPT [12], which has a hierarchical
encoder/decoder architecture with vision transformers and
convolutions (see Figure A.2). After the initial clustering
step, we replace the classification head of each decoder
level of the pre-trained model with a randomly initialized
MLP, followed by batch normalization. The number of tar-
get classes is set to K. By default we use K = 100 (but as
shown below in Sec. 4., we also evaluate and compare our
model using coarser or finer segmentations by varying K).
The dimension of the feature map F is set to D = 256. We
use the Adam optimizer [8] with an initial learning rate of
2e-3 and a 1e-4 weight decay. For outdoor environments we



Figure A.1. Example pairs of images, along with 2D-2D correspondences between them, from the dataset used to train our approach.



Figure A.2. Our self-supervised segmentation network architecture. Prototypes/feature similarities are used as targets during the first
epoch. In the following epochs, the target distributions act as pseudo-labels to guide the segmentation.

Figure A.3. We illustrate here our consistency losses. Given a pixel-to-pixel correspondence and a set of prototypes, we enforce consistency
between the representations while infusing prior information from the prototypes. Column 1 : Correspondence consistency loss Column 2
: Prototypical cross contrastive loss, Column 3 : Contrastive feature consistency loss.

finetune our model on the pose refinement task of ECMU
training set. Training is distributed among 2 Nvidia V100
GPUs with a total batch size of 4, each GPU processing
2 image pairs along with 2 positive and 4 negative asso-
ciated images selected as follows per iteration (needed for
the MS Loss LMS). Given an anchor image, we mine one
hard positive, one negative, and one hard negative. The hard
positive is the least similar image within a given radius (5
meters for ECMU and 1.5 meters for Indoor6) from the an-
chor’s position. The hard negative is the most similar image
not located within a given distance (10 meters for ECMU
and 3 meters for Indoor6) from the anchor’s position. By
similarity between images we refer to their global descrip-
tors’ cosine similarity. These descriptors are computed and
stored at the beginning of each epoch. During training, im-
ages are resized to 720 × 720 pixels and randomly cropped
and rescaled to a 640 × 640 pixels size. The associated cor-

respondences’ coordinates are adapted to compensate for
rescaling and crop caused by these image transformations.
Random photometric transformations including color jitter-
ing, Gaussian blur, and gray scaling are also applied during
training as data augmentation. During inference, images are
resized to 960 × 960 pixels size.

In Algorithm 1, we summarize the steps of the full train-
ing procedure of our model. Fig A.2 illustrates the discrim-
inative clustering process which is casted as classification
task. Pseudo targets Q are derived and used in LCE to learn
the classifiers (Sec. 3.1. of the main paper). Additionally,
Fig. A.3 illustrates the behavior of the consistency losses
(LCC ,LPC ,LPF ) described in Sec. 3.2. of the main paper.

Details about evaluating privacy.
To evaluate qualitatively and quantitatively how privacy

preserving different models are (c.f. Sec. 5.2 of the main pa-
per), we use the SfM inversion pipeline from [11] to recon-



struct images from the map. The pipeline contains three
networks. Given a database 6dof pose and a database 3D
sparse model, the pipeline tries to reconstruct the associ-
ated database image. The first network predicts the visi-
bility of the 3D points from the perspective of the image’s
camera. We are interested in showing whether it is possible
to recover an image from underlying 3D representations.
These representations are either a single SegLoc segmen-
tation label or Pixloc visual descriptor associated to each
3D point of the 3D model. For this task, we are interested
in the worst-case scenario, i.e., the attacker has access to
visibility information. Hence, we did not use nor imple-
ment this visibility network. We re-implemented the rest of
the pipeline. We train the CoarseNet and RefineNet inver-
sion models which consist of U-Nets with encoder / decoder
layers and symmetric skip connections. CoarseNet takes as
input a sparse tensor, representing the image to be recon-
structed, where the visible 3D underlying representations
are inserted into this tensor at their reprojected locations.
The model then tries to reconstruct the associated RGB im-
age. RefineNet takes as input the concatenation of the out-
put of the first U-Net with the sparse input tensor and also
tries to reconstruct the image. These networks are trained
with L1 losses, perceptual losses [18], and a discriminator
with a BCE loss. They are trained for 20 epochs with the
Adam optimizer and an initial learning rate of 1e-4. For
both Pixloc and SegLoc, we use only the finest representa-
tion maps with the highest resolution as descriptors for the
inversion experiments.

3. Storage requirement vs. accuracy trade-off
We have shown in the main paper that using a single

cluster label per keypoint (database side) and pixel (query
side) allows SegLoc to be privacy preserving and storage
efficient. In this section, we explore pose refinement when
instead of single cluster label, we store and use part of or
the full distribution over the cluster set.

To better quantify the Storage requirement vs. accuracy
trade-off, we run the refinement procedure with the follow-
ing choices for point representations. Both on the database
and query side, given a class probability vector pi, we keep
the top-K highest logits for K = 1, 3, 5, 10, 25, 50, 100
(here, K=100 corresponds to using the full probability vec-
tor). We run the refinement experiments on the ECMU test
slices 6, 13 and 21. When experimenting with the database
points representations, we use the full class probability vec-
tor for query points. When experimenting on the query rep-
resentation we keep using a single one-hot encoded label
for database points. Input images are resized to 480 × 480
and perform refinement using a single segmentation head
and no coarse-to-fine refinement. We report the percentage
of queries localized within (.25m/2°) and (.5m/5°) for each
input representation in Fig. A.4.

As expected, increasing the amount of input information
increases the localization accuracy. However it comes at the
cost of increased memory footprint. Adding more than 10
labels yields relatively lower accuracy improvement com-
pared to the first labels. It confirms that our dense represen-
tations are discriminative and only a small part of the class
probability vector is actually required to run the refinement
effectively. Selecting only the top-k predicted class likeli-
hood leads to better storage requirement-accuracy trade-off
and the labels can be stored with low storage footprint. It
underlines our choice of leveraging a single cluster label
during the pose refinement. While the drops between top-
1 and top-3 in Fig. A.4 is relatively important, we expect
much smaller drop in the case of the full resolution hierar-
chical model ( the difference between single label (topk=1)
and full representation (topk=100) is already much smaller
in SegLoc vs SegLoc full in Tabs. A.2 and A.3 (database
side) or SegLoc vs SegLoc SL in Tab. 2. and Tab. 3. of the
main paper (query side)).

Next, we consider refinement where instead of storing a
single label per 3D point we store the full distribution (top-
k=100). Similarly we use the full distribution in the query
(top-k=100). The experimental configuration is the same as
in the main paper (960*960 image input resolution, hierar-
chical model). We report results for ECMU in Tab. A.2 and
for Indoor6 in Tab. A.3. We also added comparative results
from the main paper.

As expected, increasing the richness of the input repre-
sentations induces a clear improvement in localization ac-
curacy which in turn comes at a cost of reduced privacy
and much higher storage requirement. In this setup, SegLoc
bridges the performance gap with keypoint based method.

4. Ablations
Here we complement our discussion about ablating the

different components of our model and provide additional
ablation studies. These experiments were realized at an ini-
tial stage of the project where we used 480 × 480 resized
images and only a single classification head (instead of hier-
archical decoder) both for training and inference. As such,
they were used to validate the architectural choices of the
method section and to guide the design/training of our fi-
nal models. Note however, that we expect the conclusions
drawn from these experiments to remain valid for the final
models as the core components do not change, as suggested
by our results.
Ablating the role of different losses. In Tab. 6, we study
more in depth the impact of the individual components of
our approach on its performance (c.f. Sec. 5.1. of the main
paper). As can be seen, all losses contribute to the over-
all performance and improve upon the core model using
only the discriminative clustering (first row). The feature
consistency loss LFC has the most impact as it explicitly



Figure A.4. Fine (dotted line) and medium (straight line) accuracy after refinement for different input representation (database and query
side).

Memory Reconstruction quality Localization Accuracy
(GB) PSNR (↑) LPIPS (↓) SSIM (↑) MAE (↓) Urban (%) Suburban (%) Park (%)

E
C

M
U

SegLoc 0.102 15.66 0.46 0.63 0.11 88.0 / 93.2 / 97.2 83.7 / 89.2 / 93.4 80.5 / 87.5 / 93.1
PixLoc NV [13] 9.313 21.85 0.28 0.83 0.06 88.3 / 90.4 / 93.7 79.6 / 81.1 / 85.2 61.0 / 62.5 / 69.4
PixLoc Oracle [13] 92.8 / 95.1 / 98.5 91.9 / 93.4 / 95.8 84.0 / 85.8 / 90.9
SegLoc full 16.592 19.5 0.31 0.78 0.07 93.8 / 95.9 / 97.6 89.2 / 91.6 / 93.7 88.3 / 90.5 / 93.4

Table A.2. Comparing semantics-based SegLoc with full distributions (full) with feature-based PixLoc on the pose refinement (PR) task in
terms of pose accuracy, memory requirements, and privacy of the underlying 3D map representation.

effects the feature space and implicitly effects the segmen-
tation heatmaps. With the exception of refinement on the
park slices, the deep metric learning loss (LMS) and the
set of consistency losses are complimentary, proving that
the model does benefit from multiple training signals. The
relative contribution of the consistency losses compared to
the deep metric learning loss increases for non-urban areas.
This shows that image level information is less sufficient in
challenging scenarios.

Clustering variations. First, we investigate the influence
of the clustering parameters by training the model with dif-
ferent numbers of initial prototypes K and using two differ-
ent initial clustering methods, Meanshift [4] and K-means,
within the different meta-classes (see Sec. 2 for more de-
tails). Additionally, we train a model initialized without
clustering these meta-classes, keeping only the 20 most rep-
resented ones from the semantic classes in ADE20k [19].
We present these ablative results for the ECMU dataset in
Tab A.4. From these results, we observe that increasing
the number of clusters, which also increases the representa-
tion’s dimensionality, does not improve the localization per-
formances. Decreasing the granularity of the segmentation
from 100 to 50 degrades the accuracy of pose approxima-
tion. Pose refinement seems to mostly benefit from segmen-
tations with only 50 latent classes compared to 100 classes
on the park slices. This suggests that the K-means initializa-
tion might suffer from over-segmentation which impairs the

convergence of the pose refinement method within less dis-
criminative environments. Still, given the pose approxima-
tion results, we chose to work with 100 clusters. Not clus-
tering the meta-classes causes the accuracy to drop sharply,
letting the model uncover finer details obtained with a finer-
grained segmentation seems therefore crucial. Overall, the
optimal granularity of the representations seems to largely
depend on the scene and the richness of its semantic con-
tent.

In Fig. A.6 we show the pseudo targets derived from Eq.
(1) (from the main paper) during the training phase (Q) (af-
ter the first epoch) and the resulting segmentations after the
training (derived from P) for images from the Extended
CMU Seasons dataset. Both the K-Means and MeanShift
initializations are shown for the models trained with K =
100 classes. Segmentations learnt from meanshift initial-
ization show some visually less interpretable clusters with
less precise boundaries compared to K-means initialization.
Confirmed by the quantitative results in Tab A.4, we de-
cided to use K-means initialization.

Compression and downsampling. In this section, we
study the effect of point cloud downsampling. As shown
in [3], point cloud downsampling can increase privacy at
the price of reduced accuracy. Our method using the full
point cloud annotated with cluster indexes has been shown
to already ensure a high degree of privacy. As such, while
downsampling the point cloud is possible, it would not sig-



Privacy Memory scene1 scene2a scene3 scene4a scene5 scene6
Preserving (MB) Median pose error (cm.) (↓), Median angle error (°) (↓), Recall at 5cm/5° (%) (↑)

DSAC* [2] ✓ 27 12.3/2.06/18.7 7.9/0.9/28.0 13.1/2.34/19.7 3.7/0.95/60.8 40.7/6.72/10.6 6.0/1.40/44.3
NBE+SLD [5] ✓ 132 6.5/0.9/38.4 7.2/0.68/32.7 4.4/0.91/53.0 3.8/0.94/66.5 6.0/0.91/40.0 5.0/0.99/50.5
SegLoc ✓ 161 4.8/0.71/44.4 3.4/0.36/54.8 4.6/0.85/39.6 17.0/1.15/20.1 5.9/0.84/40.0 3.9/0.68/33.4
Pixloc [13] × 28425 2.6/0.33/53.5 4.3/0.39/48.0 7.3/1.18/30.4 23.6/1.82/14.8 11.5/1.63/23.7 31.1/3.11/22.5
SegLoc full ? 39968 3.0/0.43./61.2 2.5/0.23/68.1 2.1/0.41/61.0 8.4/0.66/33.56 3.9/0.57/54.7 2.5/0.43/38.8

Table A.3. Localization results on Indoor6, we run SegLoc with full distributions (full) and compare it with Pixloc.

Init. N urban suburban park

PA

mC 20 14.5 / 37.1 / 91.7 5.8 / 20.3 / 82.2 5.9 / 22.3 / 82.4
KM 50 15.6 / 39.4 / 93.9 6.3 / 22.1 / 86.2 7.0 / 26.2 / 88.8
KM 100 15.7 / 39.4 / 93.2 6.4 / 22.5 / 86.6 7.4 / 27.1 / 87.6
KM 256 15.0 / 37.9 / 92.8 6.0 / 21.2 / 84.6 6.7 / 25.4 / 87.8
MS 50 14.6 / 37.1 / 91.4 5.9 / 21.2 / 81.7 6.3 / 23.9 / 83.1
MS 100 14.5 / 36.8 / 90.9 6.0 / 21.1 / 80.6 6.3 / 23.4 / 83.5
MS 256 14.6 / 36.7 / 91.9 6.0 / 21.3 / 84.1 6.3 / 23.6 / 84.5

PR

mC 20 30.9 / 51.9 / 91.4 27.6 / 47.5 / 81.6 22.9 / 41.8 / 80.8
KM 50 42.0 / 64.4 / 94.4 35.9 / 57.7 / 86.5 34.3 / 56.5 / 88.8
KM 100 44.8 / 64.5 / 93.7 33.9 / 55.7 / 86.9 29.8 / 52.1 / 87.5
KM 256 41.1 / 62.5 / 93.2 31.7 / 52.3 / 85.0 28.5 / 50.7 / 87.9
MS 50 37.0 / 57.9 / 92.0 27.4 / 47.8 / 82.1 24.9 / 45.8 / 83.4
MS 100 37.9 / 58.1 / 91.4 30.1 / 48.8 / 81.1 26.8 / 46.5 / 83.8
MS 256 40.9 / 63.1 / 92.5 33.9 / 54.1 / 84.4 29.8 / 50.9 / 84.6

Table A.4. Pose approximation (PA) top-1, and pose refinement
(PR) results on the Extended CMU Seasons dataset, when we
vary the clustering method and the granularity K of the seman-
tic segmentation for an input size of 480 pixels. mC refers to the
meta clusters obtained with the pre-trained model, KM refers to
K-Means and MS to MeanShift.

TopK Ratio(%) urban suburban park
500 10 81.0/89.2/94.3 70.6/79.9/86.1 69.1/78.6/85.9
1000 27 85.7/90.5/94.3 75.3/81.4/85.8 74.1/80.6/85.9
1500 51 85.9/90.4/94.3 75.9/81.2/85.5 75.0/80.6/85.9
All 100 88.0/93.2/97.2 83.7/89.2/93.4 80.5/87.5/93.1

Table A.5. PR with downsampled point clouds on ECMU.

nificantly increase privacy. To assess the effect of compres-
sion on the localization accuracy, we subsample the ECMU
3D point clouds by keeping only the top K observations for
each database image whose associated 3D points have the
highest track length. This is a crude approximation of SOTA
algorithms for point cloud compression and is only a sim-
ple way to evaluate how our approach behaves with sparser
point clouds. After running our pose refinement with these
subsampled point clouds, we report results in Tab. A.5 with
varying K. We can see that downsampling in general de-
creases pose accuracy. Despite downsampling 50% of the
3D points, the accuracy drop is within the 3-10% range.
While a more advanced compression scheme such as [17]
will probably yield a smaller drop in accuracy, it will not
further increase privacy.

5. Segmentation-based representations vs. de-
scriptor dimensionality reduction

One perspective on our segmentation-based approach is
to consider it as a descriptor compression scheme that re-
places higher-dimensional descriptors with 1D descriptors
(label information). From this perspective, we compare our
approach against a simple approach that matches SIFT fea-

Model MB King’s Old Shop St. Mary’s
GoMatch [20] 48 0.25/0.64 2.83/8.14 0.48/4.77 3.35/9.94
SegLoc 23 0.24/0.26 0.36/0.52 0.11/0.34 0.17/0.46
PixLoc [13] 3545 0.14/0.24 0.16/0.32 0.05/0.23 0.10/0.34
Sift 16D 16.23 0.07/0.1 0.12/0.23 0.03/0.11 0.03/0.11
Sift 8D 12.62 0.08/012 0.12/0.29 0.03/0.11 0.04/0.14
Sift 6D 11.71 0.09/0.14 0.23/0.39 0.03/0.13 0.06/0.19
Sift 4D 10.82 47.83/49.70 43.31/66.00 2.24/6.42 88.32/116.77

Table A.6. Localization accuracy of down-projected SIFT features
on Cambridge Landmarks

tures extracted from a query image with 3D points associ-
ated with SIFT descriptors. The camera pose is then esti-
mated using a P3P solver inside RANSAC with local op-
timization. We vary the dimensionality of the descriptors
using PCA. Table A.6 shows the results of the comparison.
As can be seen, state-of-the-art results can be achieved us-
ing as few as 6 dimensions. However, using even lower-
dimensional descriptors drastically decreases pose accu-
racy. In contrast, our approach, using 1-dimensional de-
scriptors, still performs well. We observed a similar be-
havior for PixLoc when PCA-projecting to 3D (albeit with-
out re-training). We were even able to recover images via
training an image translation network show- ing that low-
dimensional features (3D in this case) are not necessarily
privacy preserving. We attribute the difference between our
1D descriptors and the 2D/3D descriptors to learning class
labels rather than a metric space.

6. Convergence of the pose refinement

To visualize the regions of convergence, we measured
the errors before and after refinement for each query of
ECMU. Fig. A.5 show the percentage of queries with a
certain initial pose/rotation error for which refinement con-
verges (from left to right) to within the coarse, medium, or
fine threshold. As can be seen, the success of the pose re-
finement is highly dependent upon the initial pose approx-
imation. If the latter falls within the basin of convergence
of the optimization scheme the refinement will converge to
some extent. The shape of this basin depends on the com-
plexity of the local underlying scene (geometry and appear-
ance) and also on the visual overlap between the retrieved
images and the query (as a smaller visual overlap makes
it harder to get enough constraints for refinement). It thus
varies greatly between queries.



Figure A.5. ECMU, Convergence for coarse, medium and fine thresholds.

7. Qualitative analyses
In Fig. A.7, we provide additional visualizations of Se-

gLoc segmentations. The boundaries between classes are
the areas that provide most information for accurate cam-
era pose estimation whereas large uniformly labeled re-
gions are uninformative as small changes in pose might
not change the predicted class label. Identifiable borders
such as vegetation/sky, building/vegetation, road/sidewalk,
floor/furniture are well captured by the models. As such,
our approach learns something meaningful. Visually, the
clusters maintain some level of explainability and manage
to capture fine level details.
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Figure A.6. Segmentation results for the Extended CMU Seasons dataset. From left to right: original image, Q K-means initialization, Q
MeanShift initialization, P K-means initialization, P MeanShift initialization.



Figure A.7. SegLoc segmentations for the Extended CMU Seasons and Indoor6 datasets
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