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In this supplementary material to our paper, we provide
additional details about the retrieval and non-rigid 3D surface
tracking applications, as well as further qualitative, quantita-
tive results and visualization of the results presented in the
paper. Please also have a look in our video showing detailed
views of the non-rigid 3D surface registration for different
approaches.

1. Deformable object retrieval
The nonrigid dataset contains various sequences of dif-

ferent objects being deformed over time. We selected one
frame for each sequence to serve as a query image. The other
frames of all sequences compose the search database, from
where the application must retrieve the results.

For each method, we detect and describe a maximum of
1,024 keypoints inside a mask delimiting the object pixels.
Next, we sample an equal amount of descriptors for each
image to collect about 10,000 descriptors. Then we use the
sampled descriptors to compute 300 centroids using the K-
Means algorithm. The centroids are then used to calculate
one global representation for each image using the Bag-
of-Visual-Words approach to aggregate all the described
keypoints. Given a query, we use the global descriptor to
retrieve the closest K images using K-Nearest Neighbors.
We evaluate each method with the mean retrieval accuracy
for each value of K from 1 to 20.

We compare our method against the best-performing de-
scription methods, in addition to DELF [10], a state-of-the-
art descriptor designed and trained specifically for image
retrieval. DALF achieved the best performance in the re-
trieval task, as shown in Figure 1. Note that at K = 10, all
methods achieve similar scores because they can correctly
retrieve the easy images. However, note that the task be-
comes hard when K > 10, where all methods but DALF
degrade as they cannot reliably retrieve the images of the

heavily deformed objects, while DALF exhibits superior per-
formance. The full retrieval result for each query seen in
Figure 2. The code for the retrieval task will be publicly
available; its objective is to be an easy-to-run benchmark for
detectors and descriptors.
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Figure 1. Accuracy@K metric for the nonrigid object retrieval
task. The normalized area-under-the-curve for each method is the
following DISK: 96.12%, SuperPoint: 97.92%, DEAL: 98.34%.
DELF: 98, 57%, and DALF (Ours): 99, 49%.

2. Additional quantitative results

In this section, we report additional metrics beyond the
matching scores and mean matching accuracy, and present a
more detailed analysis of the ablation study.

Keypoint Repeatability. Recent methods [5,11], do not re-
port keypoint repeatability because it often does not correlate
well with downstream performance. Nevertheless, we com-
puted repeatability across all the datasets, and our approach
obtains the best average repeatability across all datasets. The
scores are the following. DALF: 0.58, DISK: 0.57, non-rigid
detector [7]: 0.47, SIFT: 0.41, and R2D2: 0.35.
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Figure 2. Our method has the best result in retrieving images of real and simulated deformed objects. The first column of each image shows
the object queries, and the rows show the results from different queries. Green images correspond to the same object as the query, and red
images do not correspond. Some objects are smaller and difficult to deform, so they may have less them 20 occurrences in the dataset. In
that case, we lower the value of K to the exact number of occurrences of the object. For this reason, we can see some empty squares in the
qualitative results. The black squares indicate no correspondent objects available.

Table 1. Extended ablation. Matching score @ 3 pixels for each
configuration C following the order of Tab. 2 of the main paper,
e.g., C1 corresponds to distinct-only, C2 to invariant-only, etc. Best
result in red, second best in green, third best in blue.

Dataset C1 C2 C3 C4 C5

Kinect1 0.58 0.52 0.53 0.55 0.54
Kinect2 0.54 0.56 0.60 0.63 0.62
DeSurT 0.48 0.43 0.46 0.50 0.49
Simulation 0.27 0.52 0.50 0.34 0.42

Extended ablation analysis. Although the two-stage train-
ing is not mandatory in our learning pipeline, it offers a better
trade-off between invariance and distinctiveness, as shown in
the top 3 performances on every dataset according to Tab. 1
(which presents the scores per dataset from Tab. 2 of the
main paper), thus we opt for C5 as the final design choice.
Note that the fusion of the invariant and distinct features
(C3–5), one of our novel contributions, achieves much better
rankings on average across all datasets.

3. Non-rigid 3D surface registration

In this section, we describe in detail the implementation
of the surface registration application using the as-rigid-as-
possible (ARAP) [9] optimization, and also show qualitative
results derived from the experiments of Tab. 3 (3D surface
registration) of the paper.

Non-rigid 3D surface registration aims to accurately align

two RGB-D frames of the same surface, viewed from differ-
ent viewpoints at the same time that the object is affected
by non-rigid deformations. Figure 3 shows an overview of
the registration pipeline. Surface alignment is a crucial step
used by non-rigid reconstruction frameworks [1,3] that allow
complete 3D reconstruction of deforming objects. Improve-
ments in registration accuracy can significantly increase the
quality of the reconstruction, enabling the use of such sys-
tems in critical, challenging applications, such as the live
reconstruction of human organs [6].

3.1. Implementation details

Our application considers the most difficult scenario:
wide-baseline registration, where the object can be in an
arbitrary viewpoint and deformed shape. Thus, it is challeng-
ing to filter outlier matches, in contrast with rigid registration,
where it is possible to fit a homography or fundamental ma-
trix using a minimal correspondence sample and perform
RANSAC to remove the outlier correspondences with high
confidence.

Our solution to this problem was to tune the AdaLAM [2]
filtering method to perform outlier detection in the presence
of image deformations. AdaLAM checks the affine consis-
tency of local point clusters and filters the correspondences
that are inconsistent with their neighboring matches. As we
have observed empirically, the assumption of localized affine
consistency is a reasonable approximation for non-rigid cor-
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Figure 3. Non-rigid 3D surface registration overview. We use the filtered correspondences (left) to align two meshes of the same surface
obtained from their respective RGB-D frames (middle) to the same reference pose and deformation (right), using as-rigid-as-possible
(ARAP) refinement.
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Figure 4. Non-rigid registration under challenging scenarios. Our method can achieve accurate non-rigid registration under large
rotations, illumination changes caused by deformations, and highly repetitive patterns. In contrast, all other techniques produce low-quality
results in at least one of the challenging scenarios. The sharp line artifacts in two registrations from DEAL and DISK indicates that the
method produced inconsistent matches even after the filtering step, and the ARAP optimization failed due to local minima. Please check the
supplementary video to visualize the registration results in 3D with the depicted image pairs and additional samples.

respondences. We adjusted the sensitivity of the local affine
RANSAC of AdaLAM to tolerate more deviation from the
base affine transformation, which usually happens in the
presence of significant deformations.

AdaLAM tends to provide erroneous consistent affine

matches when the scene has repetitive patterns, which is
inevitable in practice. Those inconsistent matches introduce
large errors in the ARAP optimization, and the method fails
to return a meaningful result. Thus, to improve the robust-
ness of the registration, for all methods, we use the best



200 matches according to the Lowe’s ratio test [4], which
drastically reduces artifacts caused by repetitive patterns,
and also accelerates the convergence of the ARAP optimiza-
tion. The non-rigid registration application source-code will
be released alongside the reference implementation of our
proposed method.

3.2. Qualitative results

Fig. 4 shows reconstruction results of challenging samples
from the non-rigid datasets, where our method obtains robust
registration. Aside from this PDF document, we made avail-
able a video (please check registration visual results.mp4)
displaying the rendered registered surfaces in 3D from our
approach and the competing methods, where it is possible to
visualize the registration quality better. It is worth mention-
ing that SuperGlue [8], the best competing method, requires
inputs in the form of image pairs, and employs global self
and cross attention across local features when matching them
, i.e., the matching problem is conditioned to the input image
pair, which significantly improves its robustness, especially
in ambiguous regions. In contrast, our method indepen-
dently detects the features, and a simple nearest neighbor
search is used to perform matching. Our strategy can em-
power SuperGlue with deformation awareness by simply
using our descriptors during training. In turn, SuperGlue’s
global self and cross-attention mechanisms can help our ap-
proach become much more robust to matching in challenging
scenarios.
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