
A. Motivation: Privacy for Restricting Memory

Ref. Dataset Ordering Memory Cost Iters Cost

[9] CIFAR10 Cls Inc 1-25MB 0.05¢ 250K-375K 20$
[44] CIFAR100 Cls Inc 10 MB 0.02¢ 50K 8$
[19, 25] 125K 15$
[9] TinyImageNet Cls Inc 5-20 MB 0.04¢ 350K-500K 25$
[19, 25] ImageNet100 Cls Inc 0.3-1 GB 2¢ 100K 50$
[19, 25] ImageNet1K Cls Inc 33GB 66¢ 1M 500$
[29] CLEAR Dist Shift 0.4-1.2GB 2¢ 300K 100$

[24] ResNet50 (bs=256) 22GB

Ours GLDv2-CL Dist Shift 90GB 2$ 2K 10$
ImageNet21K-CL ClsInc, DataInc 400GB 10$ 8K 35$

Table 3. Cost of Memory vs Computation. Google Cloud Standard Storage (2¢per GB per month for 1 month) and Compute Cost
measured as running cost of an A2 instance (3$ per hour for 1 GPU). Number of iterations (forward+backward passes) for training a CL
model on that dataset listed for comparison invariant to input image and model sizes. We observe that computational costs for running an
experiment far outweigh the costs for storing replay samples.

Prior art on continual learning [5, 9, 14, 29, 32, 44] motivate the problem from the aspect of prohibited access to previously
received data; except for a small portion that is allowed to store in memory. The two principal motivations behind restricting
the access to past samples in the literature are two folds. (i) Storage space is expensive. (ii) Access to previous data is
prohibitive due to privacy and GDPR constraints.

As for the first argument used as a motivation for limiting the memory size, as we have elaborated in Section 1 of the
main paper and similarly further detail in Table 3, the cost of storing data is insignificant. This is particularly the case when
considering the associated computational costs of training deep models. To that end, the argument of to restricting the memory
size is a an enough justifiable reason. For example, as per Table 3, it costs 2 cents to store the entirety of the CLEAR dataset,
among the largest datasets for continual learning, while it costs about 100$ to train a model continually on the same dataset. If
reducing costs are the key issue, limited computational budget and not memory, as argued earlier, is the way forward.

As for privacy considerations, this is too a not well-motivated reason behind limiting memory. A classical argument is
that due to GDPR requirements, data needs to be removed or company privacy policies, it can no longer accessible after x
number of months. First, any previous benchmark with memory constraints already violates this privacy consideration. This is
since, which data is to be made private and shall be deleted should not be up to the learning algorithm to decide. To that end,
restricting memory samples does not help solving the privacy considerations. Even if the samples stored in memory were
selected such that they do not violate any privacy constraints, which none of the prior art address, it remains a question on
whether the trained models preserve any sensitive information after training on private data. Without imposing such restriction
on the learning algorithm and the underlying model, restricting the memory for the argument of privacy does not meet its
stated objectives. This is particularly the case, as Haim et al. [23] have found that models retain a lot of information of the
training samples. This is to an extent that large number of training samples can be reconstructed only given the trained model.
Goel et al. [21] presents a catastrophic forgetting baseline, indicating forgetting might be the very objective of sustaining
privacy which is antithetical to the objective of continual learning.

In conclusion, restricting access to previous samples by restricting memory do not contribute to solving the privacy problem.
Instead, we consider the more realistic setting where only limited amount of computation is given due to cost restraint or the
need to predict every sample in a high throughput stream. This in any how imposes an implicit restraint on access of past
memory samples.

B. Dataset Construction
B.1. Constructing Imagenet2K

ImageNet2K train set is constructed using all training images in ImageNet1K dataset [18] for 1K classes as an initialization,
with selecting an additional 1K non-overlapping classes from ImageNet21K dataset [18] to form the ImageNet2K dataset. We
illustrate the creation of the test, validation and train sets below:

Test Set: We use the ImageNet1K val set as the test set to be consistent with test sets used in previous literature using
ImageNet1K. We separate 50 images per class from the sample set of the new 1K classes. We combine these two sets to create
the overall test set for experiments. The test set for every timestep consists of classes from this test set which have been seen
so far.

Validation Set: We use ImagenetV2 dataset [45] as the validation set from Imagenet1K data. We seperate 50 images per
class, not used in the test set to create the val set for the new 1K classes. We combine these two sets to create the overall



validation set for experiments. The validation set for every timestep consists of classes from this validation set which have
been seen so far.

Train Set: We order all the samples from the new 1K classes not used for creating the test and val sets for training. We order
them by classes to form the CI-ImageNet2K stream and randomly shuffle all these images to form the DI-ImageNet2K stream.
Note that the stream order is provided samplewise, allowing the stream size N to be adjusted. In the standard experiments,
data equivalent to 50 classes is sampled every timestep, for 20 timesteps.

B.2. Constructing Continual Google Landmarks V2
Continual Google Landmarks V2 (CGLM) consists of 580K samples. To obtain this subset, we start with the train-clean

subset of the Google Landmarks V2 available from the Google Landmarks V2 dataset website2. We apply the following
preprocessing steps in order:

1. Filter out images which do not have timestamp metadata available.
2. Remove images of classes that have less than 25 samples in total
3. Order data by timestamp.
4. Randomly sample 10% of data from across time as the test set

We get the rest 580K images as the train set for continual learning over 10788 classe, with rapid temporal distribution shifts.
We do not have a validation set here as we benchmark transfer of hyperparameters used from ImageNet to this dataset.

C. Estimation of Equivalent Iterations
In this section, we elaborate on the details of selecting the computational budget for distillation and expensive sampling

approaches. The key point for these calculations is the fact that the computational (and time) cost for a forward pass is 1/2 the
cost of a backward pass 3.

Distillation: When distillation approaches have a budget of 2/3rd iterations of the naive baseline, the computational cost is
as follows: 2/3C for training of the student model, and 1/2 × 2/3 = 1/3C for the teacher model which only has a forward pass,
which sums up to C. Hence, distillation methods have an equivalent computational budget as the naive baseline with 2/3rd

training iterations.
Sampling: We train the expensive models for 1/2 the number of iterations as a naive model. To select that subset of training

data, we randomly sample 3× the required number of training samples from the stored set and forward pass them through
the latest trained model to obtain the features/probabilities. And then we select the best 1/3rd of the 3× set for training using
different selection functions. We assume the cost of selecting samples given the features/probabilities is negligible.

The computational cost of training for expensive sampling methods is 1/2C, as the selected sample set is half the size
compared to the naive baseline. The computational cost of selecting the samples is 1/2×3×1/3C = 1/2C (forward pass requires
1/3rd of the total cost, on 3× the required data, the required data size being 1/2 when compared to naive). The combined cost is
the sum of selection and training cost, which is C. Hence, expensive sampling methods have an equivalent budget with 1/2
training iterations.

D. Additional Results
Due to limited space, some of the experiments in the manuscripts were deferred to the Appendix. In this section we

present results for all mentioned costly sampling methods and distillation methods. Additional results for Section 4.2: 1 “Do
Sampling Strategies Matter?” are presented in Figure 11 where all three costly sampling methods are presented, namely
Max Loss, Uncertainty Loss, and KMeans. Similarly, additional results for Section 4.2: 2 “Does Distillation Matter?” are
presented in Figure 12 where all four distillation methods are presented, namely BCE, MSE, Cosine, and CrossEntropy. We
observe that all previous conclusions consistently hold, i.e. the Naive baseline is still leading in comparison to all previous
approaches.

We also extend the time steps and the number of iterations sensitivity experiments to all four considered distillation methods
in all three setups, DI-ImageNet2K, CI-ImageNet2K and CGLM. We present additional results for Section 4.3: 1. Does the
Number of Time Steps Matter?: with results for DI-ImageNet2K presented in Figures 13 and 14 with 50 and 200 time steps
respectively, CI-ImageNet2K in Figure 15 and 16 with 50 and 200 time steps respectively and CGLM in Figures 17 and 18
with 50 and 200 time steps respectively. We observe that all previous conclusions consistently hold, i.e. the conclusions are
robust to changing time steps for a given cost C.

2https://github.com/cvdfoundation/google-landmark
3https://www.lesswrong.com/posts/jJApGWG95495pYM7C/how-to-measure-flop-s-for-neural-networks-empirically



We present additional results for Section 4.3: 2. Does the Compute Budget Matter?: on DI-ImageNet2K in Figures 19 and
20 for 100 and 1200 iterations respectively, and CI-ImageNet2K in Figures 21 and 22 for 100 and 1200 iterations respectively
and on CGLM in Figures 23 and 24 for 40 and 400 iterations respectively. We observe that all previous conclusions consistently
hold, i.e. the conclusions are robust to changing computational cost, towards both harsher and laxer computational constraint
regimes.

Figure 11. Expensive Sampling. As mentioned in the manuscript, KMeans performs the best among expensive sampling techniques such as
Max Loss and Uncertainty Loss. Nevertheless, the performance of the expensive sampling methods is worse than simple Naive.



Figure 12. Distillation Methods. All four studied distillation methods under perform compared to the simple Naive baseline in all three
studied settings. ImageNet experiments are allowed 400 iterations whereas CGLM is allowed 100 iterations.

Figure 13. DI-ImageNet2K 50 Time Steps. As observed in the manuscript, when the number of time steps, distillation methods still under
perform compared to the Naive baseline.

Figure 14. DI-ImageNet2K 200 Time Steps. As observed in the manuscript, when the number of time steps, distillation methods still under
perform compared to the Naive baseline.



Figure 15. CI-ImageNet2K 50 Time Steps. As observed in the manuscript, when the number of time steps, distillation methods still under
perform compared to the Naive baseline.

Figure 16. CI-ImageNet2K 200 Time Steps. As observed in the manuscript, when the number of time steps, distillation methods still under
perform compared to the Naive baseline.

Figure 17. CLGM 50 Time Steps. As observed in the manuscript, when the number of time steps, distillation methods still under perform
compared to the Naive baseline.

Figure 18. CGLM 200 Time Steps. As observed in the manuscript, when the number of time steps, distillation methods still under perform
compared to the Naive baseline.



Figure 19. DI-ImageNet2K - 100 Iterations. As observed in the manuscript, with reduced compute, distillation methods still under perform
compared to the Naive baseline. The compute budget of the Naive baseline, C, is set to 100 iterations whereas that of the distillation methods
is 2/3 C = 67 iterations.

Figure 20. DI-ImageNet2K - 1200 Iterations. As observed in the manuscript, with increased compute, distillation methods still under
perform compared to the Naive baseline. The compute budget of the Naive baseline, C, is set to 1200 iterations whereas that of the distillation
methods is 2/3 C = 800 iterations.

Figure 21. CI-ImageNet2K - 100 Iterations. As observed in the manuscript, with reduced compute, distillation methods still under perform
compared to the Naive baseline. The compute budget of the Naive baseline, C, is set to 100 iterations whereas that of the distillation methods
is 2/3 C = 67 iterations.



Figure 22. CI-ImageNet2K - 1200 Iterations. As observed in the manuscript, with increased compute, distillation methods still under
perform compared to the Naive baseline. The compute budget of the Naive baseline, C, is set to 1200 iterations whereas that of the distillation
methods is 2/3 C = 800 iterations.

Figure 23. CGLM 40 - Iterations. As observed in the manuscript, with reduced compute, distillation methods still under perform compared
to the Naive baseline. The compute budget of the Naive baseline, C, is set to 40 iterations whereas that of the distillation methods is
2/3 C = 27 iterations.

Figure 24. CGLM 400 - Iterations. As observed in the manuscript, with increased compute, distillation methods still under perform
compared to the Naive baseline. The compute budget of the Naive baseline, C, is set to 400 iterations whereas that of the distillation methods
is 2/3 C = 267 iterations.



D.1. Effect of Weight Decay

The choice of weight decay, wd = 0, in the manuscript was based on result of cross-validation from the set. More
specifically, we try weight decays of {5× 10−5, 1× 10−4}. We observe a minor difference in performance between various
weight decays, with a wd=0 consistently being slightly better. The results are shown in Figure 25

Figure 25. Effect of Weight Decay. Increasing the weight decay causes a slight drop in performance. Setting wd=0 gave the best results
during our parameter cross-validation.

D.2. Effect of Batch Size

In all experiments, we fixed the batch size (BS) to 1500 to optimize the utilization of our hardware resources and minimize
the training time. As shown in the literature, BS and learning rate (LR) are closely related. The selected LR was tuned to fit
the selected BS. Regardless, we present varying BS experiments in Fig (1) where we study the latest FC correction method,
ACE, and the distillation method, MSE, for BS of 250 and 500 with increased iterations of 600 and 300, respectively, and
crossvalidated learning rates. We observe that the Naive baseline is still superior even when the batch size is adjusted. Our
findings are summarized in Figure 26.

Figure 26. Effect of Batch Size. The conclusions presented in our work hold even when the batch size while is changed while the same
overall computational budget.

D.3. Effect of Increasing Computational Budget on Distillation

We complement the results in Figure 9 with additional experiments using 800 and 1200 iterations. The observed results
align with our previous observations; as long as the computation is normalized across methods, naive, the most simplest among



the considered methods, outperforms existing methods. This is as opposed to prior art comparison that does not normalize
compute, which puts the Naive baseline in disadvantage. The results are shown in Figure 27.

Figure 27. Effect of Increasing Computation Budget on Distillation. As the computation budget is increased while maintaining a
normalized compute among different methods, Naive baseline still outperforms distillation based methods.
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