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Figure 1. Qualitative comparison on general objects of the DTU dataset [2]. Our depth-aware image-based neural radiance field shows
significantly higher image quality with fewer distortions and blurring artifacts.

Abstract

In this supplemental document, we detail the architec-
ture of our method DINER (see Section A), provide a quan-
titative comparison to state-of-the-art models on novel view
synthesis for general objects in the DTU dataset (see Sec-
tion B), evaluate the influence of the depth estimator’s ac-
curacy on the synthesis quality (see Section C), and conduct
further experiments concerning depth-guided sampling (see
Section D). We conclude this document with a discussion of
ethical implications of our work (see Section E).

A. Architecture Details

We adopt the model architecture of pixelNeRF [8] and
kindly refer to their supplemental material for further details
about the image encoder and the NeRF network. Our newly
introduced components require two adaptations, namely
when we introduce depth awareness we change the dimen-
sionality of the feature vector that conditions the MLP, and
the source feature extrapolation requires us to change the
input channel size of the image encoder. Both adaptations
will be detailed in the following paragraphs.
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Figure 2. Model performance under noisy depth signals. The synthesis quality improves with increasing depth accuracy up to a standard
deviation of 1mm. Depth information with even higher accuracy does not yield further improvements in terms of synthesis quality.

Depth Awareness To guide the scene reconstruction, we
also condition the NeRF on the positionally encoded dis-
tance between the z-coordinate of the sampling point in
camera coordinates and the projected depth value. We
employ the same positional encoding as in the original
NeRF [5] and use 6 frequency channels with a base fre-
quency of 1 1

meter . The resulting 13-dimensional vector is
concatenated with the 512-dimensional feature vector sam-
pled from the feature maps and then used to condition the
NeRF MLP. The input layer weight dimensions of the MLP
are adjusted accordingly.

Source Feature Extrapolation We use a combination of
image padding and positional encoding to enable the im-
age encoder to extrapolate the feature maps. The images
are padded by 64 px by repeating the border values. The
positional encoding ranges over 4 exponentially increasing
frequencies starting with 0.5 and is applied to the pixel’s uv
coordinates which are normalized to [−1,+1]. The result-
ing positional encoding map has a channel size of 18. Note
that the positional encoding is set to 0 for all pixels that do
not belong to the padded region. Adding positional encod-
ings to the source image before applying the image encoder
means that the inputs to the image encoder no longer have 3
channels. Since we employ a pretrained network, we have
to add randomly initialized weights to its first layer. Note
that because the positional encoding maps are set to zero in
unpadded regions, here the added weights do not have an
effect on the predictions of the pretrained network.

Depth-Guided Sampling For depth-guided sampling, we
use 1000 candidate samples per ray from which we shortlist
25 samples and add 15 samples during Gaussian boosting.
This sums up to 40 samples in total which contribute to the
final ray color. The normal maps that we require for point
cloud backface culling are obtained by calculating the cen-
tral difference on the depth maps via convolutional kernels
with size 3. Foreground-background edges are filtered out.

Objective Function The objective function for training
DINER consists of 3 terms: a pixel-wise l1 distance Ll1 ,

a perceptual loss Lvgg, and the anti-bias term Lab. The ac-
cording weights are

wl1 = 1.0

wvgg = 0.1

wab = 5.0 (1.0 for DTU).

All terms are evaluated on patches of 64 × 64 px unless
noted otherwise. Lab downsamples the patches to 8 × 8 px
through average pooling before evaluating the l1 distance.
The perceptual loss was adopted from [4].

B. Further Comparisons on DTU

NeuRay MVSNeRF Ours Ground Truth

Figure 3. Qualitative comparison to NeuRay [3] and MVS-
NeRF [1] on DTU [2].

Method LPIPS ↓ L1 ↓ L2 ↓ PSNR ↑ SSIM ↑
NeuRay 0.41 0.069 0.017 19.50 0.65
MVSNeRF 0.35 0.059 0.013 20.45 0.67
IBRNet [6] 0.40 0.066 0.017 19.94 0.65
pixelNeRF [8] 0.38 0.055 0.011 20.96 0.67
KeypointNeRF [4] − − − − −
Ours w/o Lvgg 0.27 0.037 0.006 24.14 0.82
Ours 0.23 0.039 0.007 23.44 0.81

Table 1. Quantitative comparison on DTU [2].

We presented a qualitative comparison for novel view
synthesis of general objects in the DTU dataset [2] in
the main paper and in Figure 1. The quantitative evalu-
ation is provided in Table 1. Please note that Keypoint-
NeRF [4] cannot be applied to general objects since key-
points cannot be generalized to arbitrary objects and that we
added two further baseline methods NeuRay [3] and MVS-
NeRF [1]. The qualitative comparison between DINER and



Sampling Strategy Median Chamfer Dist. Maximum Chamfer Dist.

Coarse-to-Fine {160} 0.39 mm 6.7 mm
Coarse-to-Fine {40} 6.4 mm 55.6 mm
Depth-Guided {160} 0.26 mm 1.6 mm
Depth-Guided {40} 0.28 mm 6.7 mm

Table 2. Distances between the ground truth surface and the
closest sampling points (Chamfer distance) for different sampling
strategies. Curly brackets indicate the number of samples per ray.
Depth-guided sampling places samples closer to the ground truth
surface and focuses on these areas even if only few samples are
drawn.

NeuRay and MVSNeRF can be found in Fig. 3. Our method
outperforms all baseline methods by a significant margin.
The improvements are even more noticeable than for the
FaceScape dataset [7] for which we presented the quantita-
tive results in the main paper. We found that while previ-
ous methods are able to learn a coarse geometry prior when
applied to heads only, i.e. when trained and evaluated on
FaceScape, they fail to do so for general scenes. As a con-
sequence, exploiting depth information to guide the synthe-
sis of general scenes is even more beneficial. On the other
hand, we found that adding a perceptual loss does not in-
crease the synthesis quality as much as for FaceScape.

C. Influence of Depth Accuracy
Since our method relies on predicted depth maps which

are subject to inaccuracies, we investigate how depth accu-
racy reflects on the synthesis quality. To this end, we per-
form a set of experiments where we train our model on the
ground truth depth perturbed by Gaussian noise with vary-
ing standard deviations. Figure 2 displays the quantitative
and qualitative findings. We observe that higher depth accu-
racy also improves the synthesis quality up until a standard
deviation of 1mm. More accurate depth information does
not improve synthesis quality further. We conclude that a
better depth estimation network could yield an additional
boost to our model’s performance.

D. Depth-Guided Sampling
In this section, we analyze how depth guidance improves

sampling efficiency. More specifically, we measure how
close the sampled points lie around the ground truth sur-
face. For this, we consider two quantities: the distances be-
tween sampled points and the ground truth surface, and the
distances between the ground truth surface and closest sam-
pling points, i.e., the Chamfer distance. Figure 4 visualizes
both distributions in comparison to the standard coarse-to-
fine sampling strategy as introduced in the original NeRF
paper [5]. In Figure 4(left), we observe that coarse-to-fine
sampling places a comparably small number of samples
close the to ground truth surface. This is because first, a

partition of the samples must be used to query the coarse
MLP to find regions of interest; second, even a part of the
remaining samples is used to uniformly query the space
which leads to long, non-vanishing tails in the distance
distributions. As a consequence of the low sample den-
sity around the ground truth surface, we observe fewer sur-
face points with small Chamfer distances in Figure 4(right)
and a comparatively high median Chamfer distance in Ta-
ble 2. In contrast, depth-guided sampling with the same
number of points per ray places more samples closer to the
ground truth surface (see Figure 4), which reduces the me-
dian Chamfer distance by 33% and the maximum Chamfer
distance by a factor of 4 (see Table 2). Note that depth-
guided sampling does not require querying a coarse MLP
and, therefore, more samples contribute directly to the final
output color. Even when we reduce the number of sam-
ples by a factor of 4, Figure 4(left) shows that depth-guided
sampling focuses on areas close to the ground truth surfaces
and predominantly minimizes the tails of the distance dis-
tribution, i.e., drops samples that lie far away from the sur-
face. As a consequence, compared to standard coarse-to-
fine sampling with 4 times more samples, we observe a sig-
nificantly improved median Chamfer distance (see Table 2).
In contrast, when cutting the number of samples per ray for
standard coarse-to-fine sampling, we observe significantly
degraded Chamfer distances. Figure 5 demonstrates that
this results in severe artifacts around thin surfaces during
novel view synthesis. We conclude that only depth-guided
sampling allows us to cut the number of sampled points per
ray by a factor of 4 without introducing artifacts. This in
turn allows us to increase the batch size during training from
1 to 4 without changing hardware requirements which we
found to improve model performance.

E. Ethical Considerations

Our method reconstructs a volumetric representation of
a subject or general objects from sparse color camera in-
puts. Since this volumetric representation does only allow
for novel view synthesis, there is no immediate risk of mis-
use, such as deep fakes. As no personalized avatar is re-
constructed, a potential immersive telepresence application
does not need to store person-specific information. We train
the method on FaceScape [7] which is not a balanced face
dataset and is biased towards the local population. How-
ever, in the main paper, we show that DINER generalizes
well to subjects of unseen ethnicities and therefore rules out
discrimination against underrepresented minorities.

The human data used in this study is based on the
FaceScape dataset with the consent of the subjects to be
used for research. Four subjects agreed to be displayed in
publications and presentations; these subjects are the test
set.
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Figure 4. Distances between sampled points and ground truth surface for depth-guided sampling and standard coarse-to-fine-based sam-
pling as in the original NeRF paper [5]. Curly braces indicate the number of samples per ray. Left: distances between sampling points
and ground truth surface. Right: distances between ground truth surface and closest sampling point (Chamfer distance). Depth-guided
sampling effectively focuses the sampling on the ground truth surface and places samples closer to it.
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Figure 5. Qualitative comparison of sampling strategies. Both
models sample only 40 points per ray and were trained with batch
size 4. Depth guidance improves sampling efficiency and solves
artifacts around thin surfaces.
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