Supplementary Material: Diverse 3D Hand Gesture Prediction from Body
Dynamics by Bilateral Hand Disentanglement

1. Architecture Details

Body Encoder. The body encoder aims to encode the in-
put upper body skeletons into the body features via an MLP-
based architecture. The channel dimension of body features
is C' = 128 in practice.

Bilateral Hand Disentanglement Transformers. We
design bilateral hand transformers that interacted with a
body-specific transformer. Concretely, we leverage the
body features () to match the key features K and value fea-
tures V' in a single-hand-specific transformer via 3 times
Multi-Head Attention (MHA) [5], expressed as:

MultiHeadp, 4, (Q,K,V) = softmax(Q
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where d is a normalization constant.

2. More Details about MCMC Sampling

Inspired by [1], we leverage an MLP-based sampling
header S, (w) to model the diversification sampling pro-
cess, where w indicates the perturbation vector and « is the
parameter of sampling header. The prior distribution of per-
turbation is initialized from an isotropic Gaussian reference
distribution, expressed as:

po(w) = N(0, JwI) 2)

where the hyperparameter o,, denotes the standard devia-
tion. The whole sampling process is formulated as:

Pa(w) o exp | —So(w) — Jlw]® 3)
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where the M, (w) = So(w) + ? is defined as the
whole sampling function, and « is the learnable parameters
of sampling header. For notation simplicity, let 5 = {0, a}.
For the ¢ th sample in a training mini-batch with size n, the
log-likelihood function of 3 is defined as:

Zlog [/pa w;)po (hilhi, wi)dw; | . (4)

Thus the gradient of L(3) is computed as:

VL) = By, 5.0 | Valogpa(w) + Tologpe(hlh,w))]
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We decompose the 57 L(f) into two parts. The first part is
the gradient for the sampling header with parameter a:

Epﬁ(“’“"‘*h) [Valogpa(w)] = Epa(w) [qua(w)]
- Epg(w“},;ﬂ [VOCS(X(IUJ)] . (6)

The second part is the gradient for the hand generation
model with parameter 6:

Epﬂ(w\f_z,h) [valogpe(i”ha ’U}):|

Epg(h|hw)|: (h — Ro(h,w)) Vo Re(h,w)|. (7)

In practice, the terms /S (w) in Eq. (6) and <79 Ry (h, w)
in Eq. (7) are directly computed by back-propagation. The
intractable expectation terms E,(-) in Eq. (6) and Eq.
(7) are approximately solved by a gradient-based MCMC
(Langevin dynamics) [2]. Specifically, the perturbation
is obtained from the MLP-based prior sampling process
M, (w), by iterating:

I+1

Wt =w = § 7 Ma(w') + V20¢€,

wo ~ po(w), e ~ N(0,1), (8)

where [ denotes the [ th iteration state, and ¢ is the step size
of Langevin sampling. Meanwhile, the posterior distribu-
tion pg(w|h, h) of the perturbation is computed by iterat-
ing:
Wl = wi—
1
8 | VwMa(w') - g(h Ro(h,w')) 7w Ro(h,w')
+ V26e!,wy ~ po(w), el ~ N(0,1). )

In the experiments, we set the total iteration state as 6, and
the Langevin step sizes of the prior and posterior are 0.4 and
0.1, respectively.



Table 1. Statistics of the B2H, TED Gestures, and our newly collected TED Hands datasets.

Frame Numbers  Speaker Identities

Dataset Speaker Identities  Interest Shots Length ~ Sequence Numbers . .
in a Sequence in a Sequence
B2H [3] 8 71.2h 120,188 64 Only one
TED Gestures [0, 7] 1,766 106.1h 252,109 34 Multi-identities
TED Hands 1,755 99.6h 134,456 64 Only one

3. More Details about Datasets

The original TED Gestures dataset [6,7] only contains 10
upper body joints without elaborate fingers of two hands.
We newly collect a TED Hands dataset based on the raw
videos of TED talking speeches. The videos are captured
from the official TED channel on YouTube'. To obtain re-
liable 3D hand joints and their corresponding upper body
skeletons, we leverage a state-of-the-art 3D human pose es-
timator Fankmocap [4] for annotation. In particular, we ac-
quire 8 upper body joints and 30 figure joints in our dataset.

Concretely, we split the videos into 64-frame sequences
under the following criteria:

e The above-mentioned 38 joints are visible for more
than 48 frames in a sequence. Then, we interpolate
the sequence to 64 frames.

» Since there might be multiple speakers in a single
video of TED talking speeches (e.g., conversation be-
tween two speakers). To guarantee the continuity of
body-hand movements, we only select the sequence
that the joints of 64 frames belonging to a single
speaker.

Finally, we obtain 1,755 videos with 134,456 sequences
in our TED Hands dataset. The statistics of B2H, TED Ges-
ture, and our TED Hands datasets are reported in Tab. 1. For
our TED Hands dataset, the numbers of sequences in each
data partition are:

* Training set: 94,125.
¢ Validation set: 13,446.
* Testing set: 26,885.

4. Additional Visualization Results

Here, we provide more visual results of our method as
well as other competitors in the demo video. For more de-
tails, please refer to our project page. Since all the compar-
ison methods are designed without the diversification set-
ting, we divide the comparisons into two parts. In the first
part, we visualize the results of various competitors and the
initial predictions of our method. In the second part, we
visualize the diversification results based on our initial pre-
diction from stage one.

'We obey the TED Talks Team’s Creative Commons License (CC BY-
NC-ND 4.0 International). In this work, all the videos from TED talking
speeches are only used for research.

Moreover, to demonstrate the effectiveness of our pro-
posed loss functions and components, we visualize vital
frames of the generated motions based on stage one pre-
dictions. As illustrated in Fig. | and Fig. 2, we can clearly
observe that all combinations of the different loss functions
and components have positive impacts on 3D hand predic-
tions.

5. Additional Results on Model Complexity

We calculate the GFlops and inference time on a sin-
gle NVIDIA RTX 2080 GPU, as reported in Tab. 2. Due
to the bilateral hand disentanglement process, the GFlops
of our model are moderately higher than the second-best-
performing method MRT. However, our method consis-
tently outperforms other methods by large margins on L2,
FHD, and MPJRE. The inference time of our model is
around 32.921 ms (i.e., faster than 30 FPS). This inference
speed allows our method to be deployed in real-time appli-
cations.

Table 2. Comparison of model complexity, inference time, and
performance on the TED Hands dataset.

Methods GFlops | Time(ms)), L2J FHD| MPIRE]
Body2hands 0.068 2.823 2.551 1.174 11.371
MRT 0.211 4.341 2.325  0.877 10.314
BTM 0.052 11.089 2.350  1.111 10.440
LTD 0.113 5.962 2482 1.367 11.078
MotionMixer 0.110 19.071 2.324 0910 10.427
SPGSN 0.174 52.436 2435 0.990 10.887
Ours 0.503 32.921 2.037 0.258 8.888
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Figure 1. Visual comparisons of ablation study on our newly collected TED Hands dataset. We show the key frames of the generated
motions based on stage one initial predictions. Best view on screen.
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Figure 2. Visual comparisons of ablation study on our newly collected TED Hands dataset. We show the key frames of the generated
motions based on stage one initial predictions. Best view on screen.
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