
Supplementary Material of
Motion Information Propagation for Neural Video Compression

Linfeng Qi1* Jiahao Li 2 Bin Li2 Houqiang Li1 Yan Lu2

1 University of Science and Technology of China 2 Microsoft Research Asia
qlf324@mail.ustc.edu.cn, lihq@ustc.edu.cn, {li.jiahao, libin, yanlu}@microsoft.com

1. Overview
This document provides the supplementary material for

our paper of Motion Information Propagation for Neural
Video Compression. First, we provide the information
about model complexity in Section 2. Then we illustrate
some network architectures in Section 3. The settings of
traditional codecs can be found in Section 4. Finally, some
additional results are given in Section 5, including the per-
formance comparison with intra period 12, the visual com-
parisons, and more analyses on bit allocation.

2. Model Complexity

Table 1. Complexity comparison.

Method MACs Encoding time Decoding time

DCVC-HEM [7] 3269G 766ms 530ms

Our DCVC-MIP 3386G 826ms 593ms

Table 1 provides the model complexity about the MACs
(multiply–accumulate operations), encoding time, and de-
coding time. We use 1080p video frames as input for
measurement. The encoding time and decoding time are
tested on NVIDIA V100 GPU. The numbers include the
time of bitstream writing/reading. Comparing with DCVC-
HEM [7], our DCVC-MIP needs a little additional compu-
tation cost (3.6% extra MACs). We also need a little addi-
tional encoding/decoding time. The increase of complex-
ity is due to the cost of offset diversity [4] and transformer
based context refinement. We think that there is still much
room for improving the model complexity, e.g., using effi-
cient attention [12] instead of the original self-attention.

3. Network Architecture
Transformer based context refinement. As shown in

Figure 1 (a), the transformer based context refinement mod-

*This work was done when Linfeng Qi was an intern at Microsoft Re-
search Asia.

ule consists of two convolution layers and a residual Swin
Transformer block (RSTB) [8]. The RSTB contains two
swin transformer layer (STL), where the window based
multi-head self-attention could effectively enlarge the re-
ceptive field with acceptable complexity. The window size
is set to 4. It does not bring too much computation cost
because the computation is done at low resolution and the
number of channels is only 64.

STL

STL

LayerNorm

W-MSA

LayerNorm

MLP

(a) Transformer Based
Context Refinement

(b) Swin Transformer Layer (STL)

RSTB

LayerNorm

LayerNorm

Conv
(3, 64, 64, 1)

Conv
(3, 64, 64, 1)

Conv
(1, 64, 64, 1)

Figure 1. Illustration for transformer based context refinement.

Entropy model of motion coding. As mentioned in the
manuscript, we introduce the propagated motion condition
Ht−1 to the entropy model of motion coding. We use a
simple prior encoder to process Ht−1 to get an extra prior,
whose structure is shown in Figure 2. We denote this extra
prior as motion condition prior. We use the same entropy
model of motion coding as that in DCVC-HEM [7]. How-
ever, as shown in Figure 3, besides decoded hyper prior and
previously decoded motion latent mv ŷt−1, we also use the
motion condition prior as input. These three priors will help

1

Le
ak

y
R

eL
U

C
o

n
v

(3
, 6

4
, 6

4
, 2

)

Le
ak

y
R

eL
U

C
o

n
v

(3
, 6

4
, 6

4
, 2

)

𝐻𝑡−1 C
o

n
v

(3
, 6

4
, 6

4
, 2

)

motion
condition

prior

Figure 2. Structure of the motion condition prior encoder.

𝑚𝑣_ ො𝑦𝑡−1

motion
condition

prior

decoded
hyper prior

Entropy Model
of Motion Coding

𝑚𝑣_𝜎𝑡

𝑚𝑣_𝜇𝑡

𝑚𝑣_𝑞𝑠𝑡
𝑠𝑐

Figure 3. Illustration for the entropy model of motion coding.

the entropy model to estimate the quantization step, mean
and scale values for the motion latent representations.

Motion encoder and motion decoder. Figure 4 illus-
trates the structure of motion encoder and motion decoder.
The motion encoder takes the estimated motion vt and the
motion condition Ht−1 as input, and will output the latent
representation mv yt. The decoder will take the quantized
latent representation mv ŷt as input, and output the decoded
motion v̂t. The feature Gt, which is of 1/2 resolution in the
motion decoder, will serve as motion guidance to assist to
mitigate the alignment errors in context generation.

4. Settings of Traditional Codecs
We follow DCVC-HEM [7] to configure the traditional

codecs. We use the very flow preset for x265 [3]. As for
HM [1] and VTM [2], we use the low delay configuration
with the highest compression ratio. 4 reference frames is
used. The settings are as follows:

• x265
ffmpeg
-pix fmt yuv420p
-framerate {frame rate}
-i {input file name}
-vframes {frame number}
-c:v libx265
-preset veryslow
-tune zerolatency
-x265-params
“qp={qp}:keyint=32:csv-log-level=1:
csv={csv path}:verbose=1:psnr=1”
{output video file name}

Upsample
Residual block

(64, 64)

Sub Conv
(1, 64, 2, 2↑)

Upsample
Residual block

(64, 64)

Upsample
Residual block

(64, 64)

ො𝑣𝑡

Downsample
Residual block

(2, 64)

Residual block
(128, 64)

Downsample
Residual block

(64, 64)

Downsample
Residual block

(64, 64)

Conv
(3, 64, 64, 2)

𝐻𝑡−1

𝑣𝑡

Residual block
(64, 64)

Residual block
(64, 64)

Residual block
(64, 64)

Residual block
(64, 64)

Residual block
(64, 64)

Residual block
(64, 64)

𝑚𝑣_𝑦𝑡 𝑚𝑣_ ො𝑦𝑡

𝐺𝑡

𝐶

Figure 4. Structure of the motion encoder and motion decoder.

• HM
TAppEncoder
-c encoder lowdelay main rext.cfg
--InputFile={input file name}
--InputBitDepth=8
--OutputBitDepth=8
--OutputBitDepthC=8
--InputChromaFormat=444
--FrameRate={frame rate}
--DecodingRefreshType=2
--FramesToBeEncoded={frame number}
--SourceWidth={width}
--SourceHeight={height}
--IntraPeriod=32
--QP={qp}
--Level=6.2
--BitstreamFile={bitstream file name}

• VTM
EncoderApp
-c encoder lowdelay vtm.cfg
--InputFile={input file name}
--BitstreamFile={bitstream file name}

Table 2. BD-Rate (%) results for PSNR in comparison with VTM-13.2 with intra period 12

Method UVG MCL-JCV HEVC B HEVC C HEVC D HEVC E HEVC RGB Average

VTM-13.2 [2] 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

HM-16.20 [1] 8.3 15.3 20.1 13.3 11.6 22.4 13.2 14.9

x265 [3] 97.4 99.2 89.1 49.5 44.2 79.5 94.5 79.1

DVCPro [10] 54.8 63.0 67.3 70.5 47.2 124.2 50.8 68.3

M-LVC [9] 39.9 65.0 57.2 99.5 75.8 84.1 64.3 69.4

CANF-VC [5] -3.9 10.5 12.7 15.3 7.8 19.0 14.6 10.9

DCVC [6] 21.0 28.1 32.5 44.8 25.2 66.8 22.9 34.5

DCVC-TCM [11] -20.4 -1.6 -1.0 15.7 -3.4 7.8 -13.7 -2.4

DCVC-HEM [7] -38.4 -24.2 -19.9 -10.5 -23.9 -18.7 -34.2 -24.3

Our DCVC-MIP -43.8 -29.8 -28.1 -20.1 -32.4 -28.3 -39.5 -31.7

Figure 5. RD-Curves with intra perid 12.

PSNR: 32.669 dB
0.0335 BPP

PSNR: 32.018 dB
0.0339 BPP

PSNR: 29.585 dB
0.0422 BPP

Ground Truth CANF-VC DCVC-HEM Our DCVC-MIP

PSNR: 32.548 dB
0.0963 BPP

PSNR: 33.056 dB
0.0927 BPP

PSNR: 31.992 dB
0.1232 BPP

Ground Truth CANF-VC DCVC-HEM Our DCVC-MIP

Ground Truth CANF-VC DCVC-HEM Our DCVC-MIP

PSNR: 32.646 dB
0.0694 BPP

PSNR: 33.954 dB
0.0638 BPP

PSNR: 33.296 dB
0.0640 BPP

Figure 6. Visual Comparisons.

--DecodingRefreshType=2
--InputBitDepth=8
--OutputBitDepth=8
--OutputBitDepthC=8
--InputChromaFormat=444
--FrameRate={frame rate}
--FramesToBeEncoded={frame number}
--SourceWidth={width}
--SourceHeight={height}

5. Additional Results

Performance comparison with intra period 12. In the
manuscript, we have provided the performance comparison
with intra period 32. We also give comparison results with
intra period 12 here, which is shown in Table 2. We follow
DCVC-HEM [7] to configure VTM-13.2, which serves as

the anchor. It is shown that our method can achieve an av-
erage of 31.7% bit rate saving over VTM-13.2. Our model
still outperforms the previous SOTA neural codecs. Figure 5
illustrates the RD curves when the intra period is set to 12. It
is shown that under the same PSNR, our method will con-
sume less bitrate. These experimental results demonstrate
the effectiveness of the proposed method.

Visual comparisons. In Figure 6, we provide some vi-
sual comparisons with the recent methods CANF-VC [5]
and DCVC-HEM [7]. It is shown that our DCVC-MIP can
preserve more structure details and achieve higher recon-
struction quality. For example, in the first row, we can see
that while other neural codecs suffer from losing texture de-
tails and color distortion, our DCVC-MIP can still output a
high-quality result. In the other two examples, our DCVC-
MIP can also reconstruct the frame details better without
increasing the bit cost.

Input Frame

Motion

𝐵𝑃𝑃𝑓: 0.0536 𝐵𝑃𝑃𝑓: 0.0566

𝐵𝑃𝑃𝑚: 0.0056𝐵𝑃𝑃𝑚: 0.0078

w/o Motion Information Propagation
(PSNR: 33.723 dB)

w/ Motion Information Propagation
(PSNR: 33.766 dB)

𝐵𝑃𝑃𝑚: 0.0044𝐵𝑃𝑃𝑚: 0.0069

Input Frame

Motion

w/o Motion Information Propagation
(PSNR: 36.669 dB)

w/ Motion Information Propagation
(PSNR: 36.712 dB)

𝐵𝑃𝑃𝑓: 0.1738𝐵𝑃𝑃𝑓: 0.1772

Figure 7. Visualization for the pixel-level bit allocation of frame coding and motion coding. For each example, the bit allocation of
frame coding is in the top row and the bit allocation of motion coding is in the bottom row. When using Motion Information Propagation,
frame coding and motion coding share similar regions where the bit cost is reduced, which could show that the bi-directional information
interactions assist to achieve the synergy between frame coding and motion coding.

Visualization for bit allocation. We also visualize the
pixel-level bit allocation of frame coding and motion cod-
ing in Figure 7. We compare the bit allocation of frame
coding and motion coding when using model with or with-
out the proposed Motion Information Propagation. The bit
allocation of frame coding is depicted in the top row, where
BPPf means bits per pixel for frame coding (coding latent
representation yt and hyperprior representation zt). The bit
allocation of motion coding is depicted in the bottom row,
where BPPm means bits per pixel for motion coding (cod-
ing motion latent representation mv yt and motion hyper-
prior representation mv zt). In the first example, the incor-

rect estimated motion leads to an unnecessary bit increase,
which is annotated by the red box in the second column.
When employing Motion Information Propagation, we can
see that the bit cost is reduced obviously for both motion
coding and frame coding in the annotated region. In the
second example, it is also shown that Motion Information
Propagation could help to save bit cost. We can see that the
regions with obvious bit cost reduction of frame coding and
motion coding are similar. It shows that through the pro-
posed Motion Information propagation, the bi-directional
information interactions can assist to achieve the synergy
between frame coding and motion coding.

References
[1] HM-16.20. https://vcgit.hhi.fraunhofer.de/

jvet/HM/-/tree/HM-16.20. Accessed: 2022-09-01.
2, 3

[2] VTM-13.2. https://vcgit.hhi.fraunhofer.de/
jvet/VVCSoftware_VTM/-/tree/VTM-13.2. Ac-
cessed: 2022-09-01. 2, 3

[3] x265. https://www.videolan.org/developers/
x265.html. Accessed: 2022-09-01. 2, 3

[4] Kelvin CK Chan, Xintao Wang, Ke Yu, Chao Dong, and
Chen Change Loy. Understanding deformable alignment in
video super-resolution. In Proceedings of the AAAI confer-
ence on artificial intelligence, volume 35, pages 973–981,
2021. 1

[5] Yung-Han Ho, Chih-Peng Chang, Peng-Yu Chen, Alessan-
dro Gnutti, and Wen-Hsiao Peng. Canf-vc: Conditional
augmented normalizing flows for video compression. arXiv
preprint arXiv:2207.05315, 2022. 3, 4

[6] Jiahao Li, Bin Li, and Yan Lu. Deep contextual video com-
pression. Advances in Neural Information Processing Sys-
tems, 34, 2021. 3

[7] Jiahao Li, Bin Li, and Yan Lu. Hybrid spatial-temporal en-
tropy modelling for neural video compression. In Proceed-
ings of the 30th ACM International Conference on Multime-
dia, 2022. 1, 2, 3, 4

[8] Jingyun Liang, Jiezhang Cao, Guolei Sun, Kai Zhang, Luc
Van Gool, and Radu Timofte. Swinir: Image restoration us-
ing swin transformer. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision, pages 1833–1844,
2021. 1

[9] Jianping Lin, Dong Liu, Houqiang Li, and Feng Wu. M-lvc:
Multiple frames prediction for learned video compression.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 3546–3554, 2020. 3

[10] Guo Lu, Xiaoyun Zhang, Wanli Ouyang, Li Chen, Zhiyong
Gao, and Dong Xu. An end-to-end learning framework for
video compression. IEEE transactions on pattern analysis
and machine intelligence, 43(10):3292–3308, 2020. 3

[11] Xihua Sheng, Jiahao Li, Bin Li, Li Li, Dong Liu, and Yan
Lu. Temporal context mining for learned video compression.
IEEE Transactions on Multimedia, 2022. 3

[12] Sinong Wang, Belinda Z Li, Madian Khabsa, Han Fang, and
Hao Ma. Linformer: Self-attention with linear complexity.
arXiv preprint arXiv:2006.04768, 2020. 1

https://vcgit.hhi.fraunhofer.de/ jvet/HM/-/tree/HM-16.20
https://vcgit.hhi.fraunhofer.de/ jvet/HM/-/tree/HM-16.20
https://vcgit.hhi.fraunhofer.de/ jvet/VVCSoftware_VTM/-/tree/VTM-13.2
https://vcgit.hhi.fraunhofer.de/ jvet/VVCSoftware_VTM/-/tree/VTM-13.2
https://www.videolan.org/developers/x265.html
https://www.videolan.org/developers/x265.html

	. Overview
	. Model Complexity
	. Network Architecture
	. Settings of Traditional Codecs
	. Additional Results

