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1. Overview
This document provides the supplementary material for

our paper of Motion Information Propagation for Neural
Video Compression. First, we provide the information
about model complexity in Section 2. Then we illustrate
some network architectures in Section 3. The settings of
traditional codecs can be found in Section 4. Finally, some
additional results are given in Section 5, including the per-
formance comparison with intra period 12, the visual com-
parisons, and more analyses on bit allocation.

2. Model Complexity

Table 1. Complexity comparison.

Method MACs Encoding time Decoding time

DCVC-HEM [7] 3269G 766ms 530ms

Our DCVC-MIP 3386G 826ms 593ms

Table 1 provides the model complexity about the MACs
(multiply–accumulate operations), encoding time, and de-
coding time. We use 1080p video frames as input for
measurement. The encoding time and decoding time are
tested on NVIDIA V100 GPU. The numbers include the
time of bitstream writing/reading. Comparing with DCVC-
HEM [7], our DCVC-MIP needs a little additional compu-
tation cost (3.6% extra MACs). We also need a little addi-
tional encoding/decoding time. The increase of complex-
ity is due to the cost of offset diversity [4] and transformer
based context refinement. We think that there is still much
room for improving the model complexity, e.g., using effi-
cient attention [12] instead of the original self-attention.

3. Network Architecture
Transformer based context refinement. As shown in

Figure 1 (a), the transformer based context refinement mod-

*This work was done when Linfeng Qi was an intern at Microsoft Re-
search Asia.

ule consists of two convolution layers and a residual Swin
Transformer block (RSTB) [8]. The RSTB contains two
swin transformer layer (STL), where the window based
multi-head self-attention could effectively enlarge the re-
ceptive field with acceptable complexity. The window size
is set to 4. It does not bring too much computation cost
because the computation is done at low resolution and the
number of channels is only 64.
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Figure 1. Illustration for transformer based context refinement.

Entropy model of motion coding. As mentioned in the
manuscript, we introduce the propagated motion condition
Ht−1 to the entropy model of motion coding. We use a
simple prior encoder to process Ht−1 to get an extra prior,
whose structure is shown in Figure 2. We denote this extra
prior as motion condition prior. We use the same entropy
model of motion coding as that in DCVC-HEM [7]. How-
ever, as shown in Figure 3, besides decoded hyper prior and
previously decoded motion latent mv ŷt−1, we also use the
motion condition prior as input. These three priors will help
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Figure 2. Structure of the motion condition prior encoder.
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Figure 3. Illustration for the entropy model of motion coding.

the entropy model to estimate the quantization step, mean
and scale values for the motion latent representations.

Motion encoder and motion decoder. Figure 4 illus-
trates the structure of motion encoder and motion decoder.
The motion encoder takes the estimated motion vt and the
motion condition Ht−1 as input, and will output the latent
representation mv yt. The decoder will take the quantized
latent representation mv ŷt as input, and output the decoded
motion v̂t. The feature Gt, which is of 1/2 resolution in the
motion decoder, will serve as motion guidance to assist to
mitigate the alignment errors in context generation.

4. Settings of Traditional Codecs
We follow DCVC-HEM [7] to configure the traditional

codecs. We use the very flow preset for x265 [3]. As for
HM [1] and VTM [2], we use the low delay configuration
with the highest compression ratio. 4 reference frames is
used. The settings are as follows:

• x265
ffmpeg
-pix fmt yuv420p
-framerate {frame rate}
-i {input file name}
-vframes {frame number}
-c:v libx265
-preset veryslow
-tune zerolatency
-x265-params
“qp={qp}:keyint=32:csv-log-level=1:
csv={csv path}:verbose=1:psnr=1”
{output video file name}
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Figure 4. Structure of the motion encoder and motion decoder.

• HM
TAppEncoder
-c encoder lowdelay main rext.cfg
--InputFile={input file name}
--InputBitDepth=8
--OutputBitDepth=8
--OutputBitDepthC=8
--InputChromaFormat=444
--FrameRate={frame rate}
--DecodingRefreshType=2
--FramesToBeEncoded={frame number}
--SourceWidth={width}
--SourceHeight={height}
--IntraPeriod=32
--QP={qp}
--Level=6.2
--BitstreamFile={bitstream file name}

• VTM
EncoderApp
-c encoder lowdelay vtm.cfg
--InputFile={input file name}
--BitstreamFile={bitstream file name}



Table 2. BD-Rate (%) results for PSNR in comparison with VTM-13.2 with intra period 12

Method UVG MCL-JCV HEVC B HEVC C HEVC D HEVC E HEVC RGB Average

VTM-13.2 [2] 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

HM-16.20 [1] 8.3 15.3 20.1 13.3 11.6 22.4 13.2 14.9

x265 [3] 97.4 99.2 89.1 49.5 44.2 79.5 94.5 79.1

DVCPro [10] 54.8 63.0 67.3 70.5 47.2 124.2 50.8 68.3

M-LVC [9] 39.9 65.0 57.2 99.5 75.8 84.1 64.3 69.4

CANF-VC [5] -3.9 10.5 12.7 15.3 7.8 19.0 14.6 10.9

DCVC [6] 21.0 28.1 32.5 44.8 25.2 66.8 22.9 34.5

DCVC-TCM [11] -20.4 -1.6 -1.0 15.7 -3.4 7.8 -13.7 -2.4

DCVC-HEM [7] -38.4 -24.2 -19.9 -10.5 -23.9 -18.7 -34.2 -24.3

Our DCVC-MIP -43.8 -29.8 -28.1 -20.1 -32.4 -28.3 -39.5 -31.7

Figure 5. RD-Curves with intra perid 12.
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Figure 6. Visual Comparisons.

--DecodingRefreshType=2
--InputBitDepth=8
--OutputBitDepth=8
--OutputBitDepthC=8
--InputChromaFormat=444
--FrameRate={frame rate}
--FramesToBeEncoded={frame number}
--SourceWidth={width}
--SourceHeight={height}

5. Additional Results

Performance comparison with intra period 12. In the
manuscript, we have provided the performance comparison
with intra period 32. We also give comparison results with
intra period 12 here, which is shown in Table 2. We follow
DCVC-HEM [7] to configure VTM-13.2, which serves as

the anchor. It is shown that our method can achieve an av-
erage of 31.7% bit rate saving over VTM-13.2. Our model
still outperforms the previous SOTA neural codecs. Figure 5
illustrates the RD curves when the intra period is set to 12. It
is shown that under the same PSNR, our method will con-
sume less bitrate. These experimental results demonstrate
the effectiveness of the proposed method.

Visual comparisons. In Figure 6, we provide some vi-
sual comparisons with the recent methods CANF-VC [5]
and DCVC-HEM [7]. It is shown that our DCVC-MIP can
preserve more structure details and achieve higher recon-
struction quality. For example, in the first row, we can see
that while other neural codecs suffer from losing texture de-
tails and color distortion, our DCVC-MIP can still output a
high-quality result. In the other two examples, our DCVC-
MIP can also reconstruct the frame details better without
increasing the bit cost.
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Figure 7. Visualization for the pixel-level bit allocation of frame coding and motion coding. For each example, the bit allocation of
frame coding is in the top row and the bit allocation of motion coding is in the bottom row. When using Motion Information Propagation,
frame coding and motion coding share similar regions where the bit cost is reduced, which could show that the bi-directional information
interactions assist to achieve the synergy between frame coding and motion coding.

Visualization for bit allocation. We also visualize the
pixel-level bit allocation of frame coding and motion cod-
ing in Figure 7. We compare the bit allocation of frame
coding and motion coding when using model with or with-
out the proposed Motion Information Propagation. The bit
allocation of frame coding is depicted in the top row, where
BPPf means bits per pixel for frame coding (coding latent
representation yt and hyperprior representation zt). The bit
allocation of motion coding is depicted in the bottom row,
where BPPm means bits per pixel for motion coding (cod-
ing motion latent representation mv yt and motion hyper-
prior representation mv zt). In the first example, the incor-

rect estimated motion leads to an unnecessary bit increase,
which is annotated by the red box in the second column.
When employing Motion Information Propagation, we can
see that the bit cost is reduced obviously for both motion
coding and frame coding in the annotated region. In the
second example, it is also shown that Motion Information
Propagation could help to save bit cost. We can see that the
regions with obvious bit cost reduction of frame coding and
motion coding are similar. It shows that through the pro-
posed Motion Information propagation, the bi-directional
information interactions can assist to achieve the synergy
between frame coding and motion coding.
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