
Real-time 6K Image Rescaling with Rate-distortion Optimization
Supplementary Material

Summary
This supplementary material is organized as follows.

• Section 1 introduces the implementation of our archi-
tecture and training details.

• Section 2 shows more comparison with previous work.

• Section 3 discusses more ablation studies of our de-
signs.

1. Implementation Details
We implement our model in PyTorch and train on a sin-

gle Nvidia RTX3090 GPU. In this section, we describe the
details of our architecture and training settings.
Network Architecture. Table 1 and Table 2 respectively
show details of our encoder and decoder. In Table 1, we
describe the architecture of our UNet-based encoder [12].
“PixelUnshuffle 4x” stands for the rearrangement of ele-
ments [13] which downsamples the HR image by a fac-
tor of 4. “3×3, 64, LeakyReLU” denotes a 2d con-
volution operation of kernel size 3, output channel 64,
followed by a LeakyReLU operation. We use the im-
plementation of Residual Dense Block from [15], where
”ResidualDenseBlock-32” refers to a Residual Dense Block
with minimum channel 32. We save the produced quantiza-
tion tables and output coefficients into a single JPEG file us-
ing TorchJPEG [7]. Building blocks are shown in brackets,
with the number of blocks stacked. Downsampling is per-
formed at the beginning of the downsampling block using
max pooling of stride 2. After the first convolution in the
upsampling block, we upsample the decoder feature with
Pixel Shuffling Operation. Then, skip connections with the
encoder features are conducted.

In Table 2, we show the details of our efficient decoder,
which is developed based on EDSR [10]. We extract fea-
tures f(Ĉ) ∈ R24×H

s ×W
s and concatenate f(Ĉ) with the

RGB image ŷ. The concatenated features are fed into the
decoder to reconstruct the HR image x̂:

x̂ = D(ŷ ⊕ f(Ĉ)), (1)

where ⊕ is the concatenation operator along the channel
dimension.

Stage Building Block Output Size

Input Downsample

PixelUnshuffle 4x
3× 3, 64,
LeakyReLU
ResidualDenseBlock-32

H/4×W/4× 64

Downsampling Block1

[
3× 3, 128,
LeakyReLU

]
× 2

ResidualDenseBlock-64
H/8×W/8× 128

Downsampling Block2

[
3× 3, 256,
LeakyReLU

]
× 2

ResidualDenseBlock-128
H/16×W/16× 256

Upsampling Block1

3× 3, 512[
3× 3, 128,
LeakyReLU

]
× 2

ResidualDenseBlock-128

H/16×W/16× 128

Upsampling Block2

3× 3, 256[
3× 3, 64,
LeakyReLU

]
× 2

ResidualDenseBlock-64

H/8×W/8× 64

Output layer 3× 3, 3 H/4×W/4× 3

Table 1. Architectures of our encoder.

Frequency Feature Extractor f Building Block Output Size

Input Convolution 3× 3, 24 H/32×W/32× 24

Residual Convolution Block

 3× 3, 24,

ReLU,

3× 3, 24,

× 16 H/32×W/32× 24

Output Convolution
[

3× 3, 96,

PixelShuffle 2x

]
× 3 H/4×W/4× 24

Decoder-full Building Block Output Size

Input Convolution 3× 3, 24 H/4×W/4× 24

RRDB Blocks

 ResidualDenseBlock-32,
ResidualDenseBlock-32,
ResidualDenseBlock-32,

× 12 H/4×W/4× 24

Output Convolution

[
3× 3, 96,

PixelShuffle 2x

]
× 2

33, 3, H ×W × 3

Table 2. Architectures of our efficient decoder.

Training with Pixel Loss. The model is trained with
batch size 16 and patch size 256×256 in each iteration. The
initial learning rate is 2e-4. The learning rate is decayed by
0.75 for every 100, 000 iterations.
Test-time Fine-tuning during Downscaling. During
downscaling stage, we optimize the pre-trained encoder
with a fixed pretrained decoder. In the optimization dur-

1



Method Bpp of File Format Bitrate↓-Distortion↑ Kodak

Architecture Bitstream JPEG Sum of bpp LR PSNR / HR PSNR

Hyperprior [5]+JPEG 0.214 0.148 0.51 33.41 / 29.22
HIFIC [11]+JPEG 0.172 0.148 0.32 33.41 / 29.35
Ours - 0.299 0.30 33.55 / 29.42

Table 3. Comparison of our Hyperthumbnail framework against
learned compression with JPEG thumbnail. In additional baseline,
we provide a JPEG thumbnail besides learned compression, and
take the sum of bitstream size and JPEG size to calculate the final
bpp. Our framework has better rate-distortion performance than
“Compression+JPEG” baseline.

ing downscaling, we use full-resolution test images with-
out augmentation as batch size 1 to accelerate optimization.
For each image in the test set, we optimize the encoder and
QPM for 100 iterations with a learning rate of 2.0× 10−4.

2. Additional Comparison Results
2.1. Comparison with Compression+JPEG

The key difference between our rescaling framework
with learned image compression [4, 5, 11] is that our hy-
perthumbnail provides an instant preview that is compat-
ible with existing JPEG codec. However, learned image
compression typically requires GPU for decompression us-
ing neural networks. For users of learned compression,
one practical solution to support instant preview is sav-
ing a low-resolution JPEG image as a thumbnail besides
compressed bitstream, which we refer to as “Compres-
sion+JPEG” framework.

Our rescaling framework has two advantages over the
above “Compression+JPEG” solution. (a) First, we em-
bed the high-frequency information into a compact single
JPEG file that is easy to deliver. In contrast, the “Com-
pression+JPEG” framework requires two different file for-
mats for preview and compressed bitstreams, which is in-
convenient for storage and transmission. (b) Secondly,
as evaluated in Table 3, it takes considerable storage for
standard JPEG [14] thumbnails to have similar fidelity as
our encoded LR thumbnails. We choose Hyperprior [5]
and HIFIC [11], two state-of-the-art compression methods
with a similar running time as ours to build “Compres-
sion+JPEG” baseline. Because of information redundency
in the bitstream and the JPEG file, “Compression+JPEG”
framework takes more storage to achieve comparable LR
PSNR and HR PSNR with our result. In summary, our Hy-
perthumbnail provides a compact and succinct representa-
tion to support both instant preview and high-frequency re-
construction.

2.2. Quantitative comparison with JPEG

In Figure. 1, we provide an additional comparison of our
rate-HR-distortion performance with baselines. Previous

23

25

27

29

31

33

35

37

0.2 0.4 0.6 0.8 1.0 1.2

H
R

 P
SN

R
 (R

G
B

)

bpp

Ours 2x
Ours 4x
IRN+JPEG 4x
QPM+JPEG 1x
JPEG 1x
IRN+PNG 8x, 4x

Figure 1. The rate-HR-distortion curve on Kodak [1] dataset.
Our method (s = 2, 4) outperforms JPEG, IRN [16] in the RD
performance. For the ‘QPM + JPEG’ curve, where s = 1, we
follow the standard JPEG algorithm and adopt QPM module as a
plugin for table prediction.

rescaling methods such as IRN [16] in PNG format with dif-
ferent rescaling scale (“IRN+PNG 8×,4×”) is even worse
than “JPEG” [14]. “IRN+JPEG 4×” shows that JPEG for-
mat with different quality factors boosts the rescaling meth-
ods. In contrast, our method is much better than the above
three baselines, thanks to our image-specific quantization
design.

Another interesting extension of our work is to use QPM
as a plug-in to improve the performance of traditional JPEG
compression, which is shown by “QPM + JPEG” curve. We
set the rescaling factor as s = 1, remove our encoder and
decoder, and only train our QPM Module as a compression
method. An improvement of 0.5dB is observed at most bi-
trate constraints.

Note that traditional image compression codec, such as
JPEG, does not produce an LR embedding as rescaling
methods. Thus, their results are only for reference.

2.3. Decoding efficiency comparison with AVIF and
JPEGXL.

With no available GPU implementation, we test the de-
coding efficiency of AVIF (344.8 ms) and JPEG-XL (257.9
ms) on an Intel Xeon Gold 5218 server CPU at 4K res-
olution and 0.3 bpp. In comparison, our decoder (14.1
ms) is much faster with GPU acceleration. According to
a survey [2], the usage statistics of JPEG (77.8%) is much
higher than AVIF (0.1%). Meanwhile, JPEG-XL will soon
be deprecated by Chrome, and some websites (e.g., Twitter
and Shopee) use JPEG as the only lossy image file format.
Meanwhile, our framework can be integrated into most apps
(e.g., Chrome and WhatsApp) without building extra sup-
port for transmission and previewing, which is more practi-
cal and useful.



Method Bitrate↓-Distortion↑ Kodak Time(ms)↓ LR PSNR ↑ / HR PSNR↑
Architecture bpp LR PSNR / HR PSNR Down / Up BSD100 Urb100 DIV2K

Ours w/o f 0.30 33.26 / 29.32 86.2 / 32.3 32.56 / 27.57 30.90 / 26.46 33.40 / 30.00
Ours- w/o f -b22 0.30 33.24 / 29.27 86.2 / 38.6 32.51 / 27.63 30.89 / 26.69 33.48 / 30.09
Ours 0.30 33.55 / 29.42 86.2 / 37.8 32.90 / 27.66 31.16 / 26.62 33.62 / 30.15

Ours enc-48 0.30 33.51 / 29.17 63.7 / 37.8 32.88 / 27.58 31.21 / 26.51 33.62 / 30.05
Ours enc-96 0.30 33.52 / 29.29 183.5 / 37.8 32.88 / 27.66 31.22 / 26.66 33.62 / 30.15

Table 4. Ablation study of our encoder-decoder architectures on the downsampling / upsampling time and the PSNR of reconstructed HR
image / LR thumbnail.

(a) Ground truth (b) Ours λ1 = 0.6 (c) Ours λ1 = 0

Figure 2. guidance loss ablation on Kodak [1] image kodim17.
We visualize the HR images with their LR counterparts at the
bottom-right. (b) (c) are produced by 4× HyperThumbnail models
trained with different λ1 and the bpp is 0.4.

3. Additional Ablation Study

Guidance Loss. In Figure.2, we conduct a qualitative ab-
lation study of guidance loss. It demonstrates that guidance
loss is crucial to preserve the quality of LR images, without
introducing noticeable degradation to HR images.
Frequency-aware Decoder. Because the efficiency of
HR reconstruction is important for a better user experi-
ence, our decoder architecture has to be succinct and ef-
fective. In Table 4, we study the capacity of our decoder
with frequency feature extractor f . Removing f in our
framework(“Ours-w/of”) results in a drop in both the HR
and LR RD performance. Based on “Ours-w/of”, we in-
crease the residual blocks of the decoder from 16 to 22.
“Ours-w/of -b22” takes more upscaling time, but it ends up
with a similar HR RD performance with “Ours-w/ f” and a
significantly inferior LR RD performance. Since the spatial
resolution of quantized coefficients Ĉ is 1

8 of the embed-
ding image ŷ, the running time of frequency feature extrac-
tor only accounts for 14.6% of the entire decoder. Thus, our
frequency feature extractor f demonstrates a strong advan-
tage with negligible computation cost.
Asymmetric encoder-decoder. We quantitatively evalu-
ate the influence of the encoder capacity on the RD perfor-
mance in the bottom two rows of Tab. 4. Based on “Ours”,
We adjust the channel of our encoder from 64 to 48 and 96.
The experiment shows that our framework benefits from the
larger encoder. Since the 96-channel encoder is 2× slower
than 64 channel encoder and the improvement is marginal,
we set encoder channel to 64 in most of our experiments to
ease training.

Also, larger decoders can be applied to the same Hyper-
Thumbnail for better reconstruction quality. As shown in
the table below, “Ours-large” decoder outperforms “Ours-
full” decoder in the PSNR of HR significantly (Tab. 5) with
4× of parameters, sharing the same HyperThumbnails.

Decoder Kodak Set5 Set14 BSD100 Urb100 DIV2K

Ours-full 29.67 30.48 28.21 27.93 27.35 30.49
Ours-large 29.74 30.56 28.39 28.01 27.74 30.61

Table 5. HR reconstruction PSNR with different decoder capacity.

3.1. Additional qualitative results

In this section, we visualize more results on the
DIV2K [3] validation dataset and the FiveK [6] dataset.
Our model achieves the best balance between the embed-
ding artifacts on LR and the restoration of HR detail. Our
approach outperforms baseline methods, especially in tex-
ture restoration. All baseline models are trained on the same
DIV2K training dataset to fit on guidance LR ŷ and target
HR x̂. The results are cropped from the original image to
ease comparison, please refer to Fig. 3. Also, in Fig. 4,
we visualize more rescaling results of real world 6K images
with our framework.

Acknowledgement
We express our sincere gratitude to our friends and do-

main experts, Junming Chen, Yue Wu, and Yu Wang for
their invaluable contributions in the design of our project.
Additionally, we extend our appreciation to Xiaogang Xu
and Xilin Zhang for reviewing and revising the writing.



EDSR [10] 4× SwinIR [8] 4× IRN [16] 4× HCFlow [9] 4× Ours 4× Ours-full 4× Ground Truth
& JPEG q=98 & JPEG q=98 & JPEG q=96 & JPEG q=90

Figure 3. Visual results of performing 4× rescaling on the DIV2K [3] and FiveK [6] datasets with baseline methods and our models. The
images are cropped to ease the comparison. Please zoom in for details.



1472×960, 346KB 5888×3840, 16.9MB

Ours - JPEG thumbnail Ours – restored HR (cropped)

1408×896, 159KB 5632×3584, 11.9MB 1408×896, 413KB 5632×3584, 17.5MB

1472×960, 251KB 5888×3840, 16.9MB

960×1472, 658KB 3840×5888, 30.3MB

Ours - JPEG thumbnail Ours – restored HR (cropped)

960×1472, 497KB 3840×5888, 24.4MB

5632×3584, 14.4MB1408×896, 257KB

1472×960, 426KB 5888×3840, 24MB

Ours - JPEG thumbnail Ours – restored HR (cropped)

Figure 4. More results of 4× rescaling with our framework on real-world 6K images [6]. Please zoom in for details. Note that the images
here are compressed due to the size limit of camera-ready.



References
[1] Kodak lossless true color image suite. http://r0k.us/

graphics/kodak/. Accessed: 2022-03-01. 2, 3
[2] Usage statistics of JPEG for websites. https :

//w3techs.com/technologies/details/im-
jpeg. Accessed: 2022-03-01. 2

[3] Eirikur Agustsson and Radu Timofte. NTIRE 2017 chal-
lenge on single image super-resolution: Dataset and study.
In Proceedings of CVPR Workshops, 2017. 3, 4

[4] Johannes Ballé, Valero Laparra, and Eero P. Simoncelli.
End-to-end optimized image compression. In Proceedings
of ICLR, 2017. 2

[5] Johannes Ballé, David Minnen, Saurabh Singh, Sung Jin
Hwang, and Nick Johnston. Variational image compression
with a scale hyperprior. In Proceedings of ICLR, 2018. 2

[6] Vladimir Bychkovsky, Sylvain Paris, Eric Chan, and Frédo
Durand. Learning photographic global tonal adjustment with
a database of input / output image pairs. In Proceedings of
CVPR, 2011. 3, 4, 5

[7] Max Ehrlich, Larry Davis, Ser-Nam Lim, and Abhinav Shri-
vastava. Quantization guided JPEG artifact correction. In
Proceedings of ECCV, 2020. 1

[8] Jingyun Liang, Jiezhang Cao, Guolei Sun, Kai Zhang,
Luc Van Gool, and Radu Timofte. Swinir: Image restoration
using swin transformer. In Proceedings of ICCV Workshops,
2021. 4

[9] Jingyun Liang, Andreas Lugmayr, Kai Zhang, Martin
Danelljan, Luc Van Gool, and Radu Timofte. Hierarchi-
cal conditional flow: A unified framework for image super-
resolution and image rescaling. In Proceedings of ICCV,
2021. 4

[10] Bee Lim, Sanghyun Son, Heewon Kim, Seungjun Nah, and
Kyoung Mu Lee. Enhanced deep residual networks for single
image super-resolution. In Proceedings of CVPR Workshops,
2017. 1, 4

[11] Fabian Mentzer, George Toderici, Michael Tschannen, and
Eirikur Agustsson. High-fidelity generative image compres-
sion. In Advances in NeurIPS, 2020. 2

[12] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net:
Convolutional networks for biomedical image segmentation.
In Proceedings of MICCAI, 2015. 1

[13] Wenzhe Shi, Jose Caballero, Ferenc Huszar, Johannes Totz,
Andrew P. Aitken, Rob Bishop, Daniel Rueckert, and Zehan
Wang. Real-time single image and video super-resolution
using an efficient sub-pixel convolutional neural network. In
Proceedings of CVPR, 2016. 1

[14] Gregory K. Wallace. The JPEG still picture compression
standard. Commun. ACM, 34(4):30–44, 1991. 2

[15] Xintao Wang, Ke Yu, Shixiang Wu, Jinjin Gu, Yihao Liu,
Chao Dong, Yu Qiao, and Chen Change Loy. ESRGAN:
enhanced super-resolution generative adversarial networks.
In Proceedings of ECCV Workshops, 2018. 1

[16] Mingqing Xiao, Shuxin Zheng, Chang Liu, Yaolong Wang,
Di He, Guolin Ke, Jiang Bian, Zhouchen Lin, and Tie-Yan
Liu. Invertible image rescaling. In Proceedings of ECCV,
2020. 2, 4

http://r0k.us/graphics/kodak/
http://r0k.us/graphics/kodak/
https://w3techs.com/technologies/details/im-jpeg
https://w3techs.com/technologies/details/im-jpeg
https://w3techs.com/technologies/details/im-jpeg

	. Implementation Details
	. Additional Comparison Results
	. Comparison with Compression+JPEG
	. Quantitative comparison with JPEG
	. Decoding efficiency comparison with AVIF and JPEGXL.

	. Additional Ablation Study
	. Additional qualitative results


