
1. Overview
In this appendix, we provide the detailed setting about T

in Sec. 2. For more analyses about our method, the differ-
ence between FPL and negative learning is in Sec. 3.1, gra-
dient vanishing in K value selection strategy is in Sec. 3.2,
details of positive gradient score are in Sec. 3.3, and gradi-
ent similarity between Gf and Gide is in Sec. 3.4. For more
empirical results, the ablation study about the K value selec-
tion strategy is provided in Sec. 4.1, and class-wise analysis
is in Sec. 4.2. Besides, we discuss the limitation of our FPL
in Sec. 5 and illustrate more examples in Sec. 6.

2. Experimental Details
We provide the detailed setting about the cumulative

probability upper bound T in our experiments in Table 1,
Table 2, Table 3.

Table 1. The setting of T on Cityscapes.

Method ResNet 50 ResNet 101
1/32 1/16 1/8 1/4 1/32 1/16 1/8 1/4

FPL+CPS w/o cutmix 0.95 0.9 0.9 0.9 0.95 0.95 0.95 0.9
FPL+CPS w/ cutmix 0.9 0.85 0.85 0.85 0.9 0.85 0.85 0.85
FPL+AEL 0.95 0.95 0.9 0.9 0.9 0.9 0.85 0.85

Table 2. The setting of T on VOC2012.

Method ResNet 50 ResNet 101
1/16 1/8 1/4 1/16 1/8 1/4

FPL+CPS w/o cutmix 0.9 0.9 0.9 0.95 0.9 0.9
FPL+CPS w/ cutmix 0.95 0.9 0.9 0.9 0.9 0.9
FPL+AEL 0.95 0.95 0.95 0.95 0.9 0.9

Table 3. The setting of T on VOC2012 LowData.

Method 1/32 1/16 1/8 1/4
FPL+CPS w/ cutmix 0.95 0.85 0.85 0.85

3. More Analysis
3.1. Difference between FPL and negative learning

For uncertain unlabeled pixels, negative learning-based
methods find their models always predict certainly that
these pixels do not belong to some categories. Hence, they
treat the uncertain pixels as negative samples to those un-
likely categories. A commonly used paradigm sets a thresh-
old (e.g., 0.2), and considers the classes for which the pre-
dicted probabilities are less than the threshold as negative
categories [3]. For clarity, we take the negative learning loss
based on cross-entropy loss as the comparison object, since
our method is also an extension of cross-entropy loss. To
unify the form, we denote the categories that do not belong
to the negative categories as Yus. Formulately, the negative
loss Ln is:

Ln(xus) = Ln
us = −

∑
j /∈Yus

log(1− pjus). (1)

We see that this loss function requires the probabilities for
negative categories to be small. To further show the differ-
ence between Ln and our Lf , we convert the Ln as:
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Eq. 2 shows that the negative loss implicitly increases the
prediction for the top-1 pseudo label max

i ̸=j
(zius), indicat-

ing that it still corrupts the training of the model when
pseudo labels are wrong. Differently, our FPL desires to
increase the predictions for all fuzzy positive categories
in {zius, i ∈ Yus}, hence we encourage their minimum
min(zius) to learn the semantics of possible GT in them:

Lf
us ≈ ReLU(max

j /∈Yus

(zjus)− min
i∈Yus

(zius)). (3)

Furthermore, we empirically demonstrate the superiority
of FPL over the negative learning-based method. Besides,
we also evaluate the performance using a soft loss Ls with
the soft label since it has similarities to FPL in softening
pseudo labels, which is computed as:

Ls(xus) = Ls
us =

C∑
i

qius log
qius
pius

, (4)

where pus is the predicted probability, and qus is the learn-
ing target. Segmentation performances are shown in Ta-
ble 4, where ‘Nega.’ represents the results obtained by neg-
ative loss Ln, and ‘Soft.’ represents the results obtained
by soft loss Ls. In addition, U2PL [4] introduces the idea
of negative learning in the manner of contrastive learning,
hence we also provide its performance here. From Table 4,
we see our FPL model achieves the best performance, re-
flecting the superiority of FPL over other alternatives.

Table 4. These results are obtained on Cityscapes using ResNet
101 as the backbone.

Method 1/16 1/8 1/4
CPS w/ cutmix 74.72 77.62 78.93
Soft.+ CPS w/ cutmix 73.19 77.43 78.75
Nega.+ CPS w/ cutmix 75.34 77.15 78.31
U2PL [4] 74.90 76.48 78.51
FPL+CPS w/ cutmix 75.74 78.47 79.19

3.2. Gradient vanishing in K value selection strategy

In the K value selection strategy, we select K=n-1 instead
of K=n. This practice is to alleviate the problem of gradient



vanishing. To explain this, we first perform an analysis in
a simplified case where no perturbations are added in train-
ing, that is, the prediction that generates pseudo labels has
the same distribution as the training prediction. We further
illustrate the actual training gradient in Fig. 1.

Analysis in simplified case. To discuss training gradi-
ent, we convert the gradients of Lf

us to probabilistic form:
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Here we only need to analyze the gradients of positive cat-
egories, because the absolute value of the gradient sum on
the positive and negative categories are equal:
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From Eq. 5, we see that the ∂Lf
us

∂zi
us

is close to 0 when its
numerator (i.e.

∑
j /∈Yus

pjus) is close to 0. According to our
K value selection strategy, the lower bound of

∑
j /∈Yus

pjus
can be easily obtained. If we choose Kus = n, then we get:

inf(
∑
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pjus) = 0, (7)

where inf means the lower bound. Eq. 7 shows that it is
possible for

∑
j /∈Yus

pjus to approach 0 causing the problem
of gradient vanishing. When setting Kus an integer less
than n (i.e., Kus = [α · n] , 0 < α < 1)), we derive that:
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n− 1
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Eq. 8 provides a lower bound for the numerator of ∂Lf
us

∂zi
us

,
which alleviates the problem of gradient vanishing. In prac-
tice, we use Kus = n− 1 for all our experiments.

Actual gradients in training. In actual training, the
above inference will be deviated due to the influence of dis-
turbance (e.g., data augmentation), but the conclusion still
holds. Considering that our model is also subject to a su-
pervised loss Lsup except for the fuzzy positive loss Lf .
A too-small gradient from Lf will lead the information of
unlabeled data to be overwhelmed by the supervised loss.
We illustrate the actual gradients selecting K = n − 1 and
K = n in Fig. 1. It can be seen that K = n brings a small
training gradient while K = n− 1 obtains a larger gradient
in most mini-batches.

Figure 1. The gradient sum is
∑

j /∈Yus

∂Lf
us

∂z
j
us

, and we sort these
mini-batches by their gradient sum using K = n. Here we only
present examples with small (i.e., prone vanishing) gradients.

3.3. More details of positive gradient score

As shown in Fig. 2 (a) and (b), we see that in Case 1,
most pixels (>85%) have K = 1 and positive gradient score
Rf is very close to 1. Besides, we see that Rf is slightly
lower than Rv in Case 3.

3.4. Gradient similarity between Gf and Gide

In Case 2 of Sec. 3.4, though Lf encourages the GT pre-
diction to increase which is better than existing Lv , it also
encourages the predictions for other positive categories to
increase. Ideally, the cross-entropy loss only increases the
GT prediction and suppresses the predictions for all other
categories. We name the gradient computed in this ideal
situation as the ideal gradient Gide.

Here, we propose to use the cosine similarity between
the ideal gradient vector Gide and our fuzzy gradient vec-
tor Gf brought by Lf to further analyze our FPL in Case 2.
If the cosine similarity is greater than 0, it means the pro-
jection of Gf on Gide is positive, indicating Gf makes our
model go further in the ideal direction. For comparison, we
also present the cosine similarity between the gradient vec-
tor of the vanilla method Gv and the ideal gradient Gide.
Due to the complexity of predicted probability, the rela-
tionship between the cosine similarity sim(Gf ,Gide) =
Gf ·Gide

|Gf ||Gide| and 0 is not mathematically absolute. There-
fore, we count sim(Gf ,Gide) and sim(Gv,Gide) quan-
titatively. As shown in Fig. 3, we first observe that the posi-
tive rates of sim(Gf ,Gide) are more than 90% in all mini-
batches, which indicates that Gf makes our model go fur-
ther in the ideal direction in most cases. Second, we see that
the sim(Gf ,Gide) is greater than the sim(Gv,Gide),
which means our fuzzy gradient Gf is closer to the ideal
gradient Gide than the gradient from vanilla method Gv .

The norms of Gf and Gide. The sim(Gf ,Gide) only



Figure 2. (a) The proportion of K = 1 pixels in Case 1. (b) The positive gradient score of Case 1. (c) The positive gradient score of Case
3. This figure is plotted on VOC2012 with 1/8 labeled data.

reflects that the angle between our fuzzy gradient and the
ideal gradient is a mostly acute angle. But the norms of
Gf and Gide also affects optimization of our model. If the
norm of Gf is much larger than that of Gide, it will cause
Gf over-optimize our model, hence even if their angle is
small, it will also be detrimental to optimization. We prove
that the norms of Gf and Gide are both range of [0,
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Quantitatively, we provide the norms of Gf and Gide in
Fig. 4. We see that the two norms are close and the norm of
Gf is smaller than that of Gide, which means that our FPL
won’t bring the problem of over-optimization.

Table 5. Ablation study on K value selection strategy. Results
are obtained on VOC2012 and Cityscapes with 1/16 labeled data.

K strategy K=3 K=2 Step Ours(K=n) Ours(K=n-1)
FPL+CPS 56.71 61.09 66.39 65.98 68.67

4. More Empirical Studies
4.1. Ablation study for K value selection strategy

Here we evaluate the superiority of the proposed K value
selection strategy by comparing our strategy with a fixed K

Figure 3. The cosine similarity between ideal gradient Gide,
fuzzy gradient Gf , and vanilla gradient Gv . Also, we present the
positive rate of the similarity between Gide and Gf computed on
pixels in each minibatch. This figure is counted on VOC2012 with
1/8 labeled data using the CPS [1] framework.

Figure 4. The norms of Gide and Gf counted on VOC2012 with
1/8 labeled data using the CPS [1] framework.

value strategy and a step-decay K value strategy. The step
decay strategy is to initialize the K value to 3 and decrease
K by one every 1/3 of the total training epochs. In addition,
we also verify that K = n − 1 is better than K = n in our
K value selection strategy. The results are shown in Table 5.
We see that fixed K values result in a large degradation in
the performance of FPL since a fixed K value causes the
model to produce high-entropy predictions, making it diffi-
cult to obtain accurate classifications. For the step decay K
value strategy, it achieves better results than fixed K values,
because it could reduce the K value during training to obtain



Class Wall Fence Truck Terrain Rider Pole Motorcycle Train Light Bicycle Sign Sidewalk Person Bus Building Vegetation Car Sky Road
AEL [2] 44.40 45.26 51.35 56.46 59.32 62.81 65.82 69.67 70.71 76.87 76.92 77.85 80.95 82.24 90.79 91.64 93.39 93.59 97.03
AEL+FPL 51.71 48.26 71.88 60.67 59.78 62.97 65.28 71.69 70.84 76.99 76.74 77.93 81.20 80.99 91.10 92.00 94.27 94.01 96.97
Improvement 7.31 3.00 20.53 4.21 0.46 0.16 -0.54 2.02 0.13 0.12 -0.18 0.08 0.25 -1.25 0.31 0.36 0.88 0.42 -0.06

Table 6. Results for each category on Cityscapes with 1/32 labeled data using AEL (ResNet 101) as the baseline.

low-entropy classifications. However, it is still worse than
our proposed strategy since it makes K values the same for
all pixels, ignoring their difference in the learning progress.
In contrast, our method adaptively chooses the K value for
each pixel according to its predicted probability distribu-
tion. We also see that K = n − 1 is better than K = n
in our K value selection strategy. This is because selecting
K = n− 1 alleviates the gradient vanishing problem.

4.2. Class-wise improvements

The improvements that FPL brings to each category are
shown in Table 6. Statistically, FPL improves hard classes
significantly, e.g., Wall (7.31), Fence (3.00), Truck (20.53),
and Terrain (4.21), while achieving results on par with the
baseline model in other medium and easy classes. This phe-
nomenon reflects that FPL mainly rectifies the learning of
pixels in hard classes. This is because there are more wrong
pseudo-labels in hard classes than in easy classes and the
advantage of FPL is that it learns these wrong predicted pix-
els more accurately.

5. Limitations

Though works well, FPL has the limitation of high time
complexity since it requires assigning a K value to each
pixel. From Eq. (7) of our manuscript, we see that the time
complexity of computing Lf is O(C) when the Y is deter-
mined, where C is the number of classes. For vanilla Lv ,
it is a special case of Lf when the K is fixed to 1, hence
the time complexity of original Lv for one pixel is O(C).
When it comes to Lf , we additionally need to decide the K
value for each pixel of which the time complexity is O(K)
since it needs K times additions and K times comparisons.
Hence, the time complexity of computing Lf is O(KC)
which is K times of computing the original Lv . We also
quantitatively provide the seconds of training our FPL in
practice. As shown in Table 7, FPL brings about 15% addi-
tional training cost.

Table 7. Seconds per epoch. These statistics are measured us-
ing 8 Tesla V100 GPUs under the setting of 1/8 labeled data with
ResNet 101 baseline.

Method Cityscapes VOC2012
AEL [2] 730s 835s
FPL+AEL 820s 985s

6. Visualization
We present more samples of K value maps during train-

ing in Fig. 5. And we illustrate some examples of our seg-
mentation results in Fig. 6.
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Figure 5. The visualization of K values. This figure is plotted on the VOC2012 with 1/16 labeled data using FPL+CPS w/ CutMix as the
training method.

Figure 6. These segmentation results are obtained on the VOC2012 dataset with 1/16 labeled data. For clarity, we show ground truth (GT)
in the form of instance labels, and the predictions of CPS and FPL+CPS are presented in the form of semantic labels.
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