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1. Proof of Lemma1

Lemma 1.1. Assume that LDk
is differentiable and

(W∗
k,ϕ

∗
k) is the unique minimizer of LDk

(θ,Wk,ϕk) +
λ
2 ∥g(Wk) − g(WC)∥2F . Then the gradient components
of the meta-loss Fk(θ,WC) with respect to θ and WC

are given by ∂Fk

∂θ =
∂LDk

(θ,W∗
k,ϕ

∗
k)

∂θ and ∂Fk

∂WC
=

λ(∂g(WC)
∂WC

)⊤[g(WC)− g(W∗
k)], which are no Hessian in-

formation.

Proof. First, since LDk
is differentiable and (W∗

k,ϕ
∗
k) =

argminWk,ϕk
LDk

(θ,Wk,ϕk)+
λ
2 ∥g(Wk)−g(WC)∥2F ,

from the first-order optimality condition we know that,
when Wk = W∗

k and ϕk = ϕ∗
k:

∂LDk
(θ,W∗

k,ϕ
∗
k)

∂W∗
k

+ λ(
∂g(W∗

k)

∂W∗
k

)⊤[g(W∗
k)− g(WC)]

= 0,

∂LDk
(θ,W∗

k,ϕ
∗
k)

∂ϕ∗
k

= 0.

(1)

Next, we know that:

Fk(θ,WC)

= min
Wk,ϕk

LDk
(θ,Wk,ϕk) +

λ

2
∥g(Wk)− g(WC)∥2F

= LDk
(θ,W∗

k,ϕ
∗
k) +

λ

2
∥g(W∗

k)− g(WC)∥2F ,
(2)

where (W∗
k,ϕ

∗
k) = argminWk,ϕk

LDk
(θ,Wk,ϕk) +

λ
2 ∥g(Wk)− g(WC)∥2F .

Then, we compute the gradient components of
Fk(θ,WC) with respect to θ and WC . From the chain
rule, we have (3) and (4), where 1⃝ and 2⃝ hold according
to (1).

2. Dataset and Implementation details

2.1. More details of Meta-Dataset

Meta-Dataset [3] contains different types of datasets
with different categories. Some datasets contain natural im-
ages, like ImageNet, Flowers and Birds, but other datasets
consist of special types of images. Quick Draw and Om-
niglot, their images are some black handwritten characters
on a white background. Images of textures present percep-
tual features with different sense of quality, not having a
single object in the image. Traffic signs involves a variety
of traffic signs. MSCOCO is similar to ImageNet, but lower
resolution.

2.2. Implementation details

In this section, we first introduce the implementation de-
tails of our baseline model multiple SDLs (single-domain
models) and MDL (a multi-domain model) by optimizing
(5) and (6), respectively, in our experimental comparison
part. We use ResNet-18 as backbone, in line with the other
models.

min
θ,ϕk

LDk
(θ,ϕk), k = 1, 2, ..., N. (5)

min
θ,{ϕk}N

k=1

N∑
k=1

LDk
(θ,ϕk). (6)

In our experiment, N equals 8, and the eight datasets
are ImageNet, Omniglot, Aircraft, Birds, Textures, Quick
Draw, Fungi, VGG Flower from Meta-dataset respectively,
also called seen datasets.

We follow the training protocol of precious works [1, 2].
For SDLs, we use SGD with momentum and adjust the
learning rate using cosine annealing. See the Line 2 to 9
of the Table 1, in which we set the learning rate, the weight
decay, the annealing frequency, the batch size and the max-
imum number of training iterations (Max iteration) for each
subdataset from Meta-Dataset. These results are finalized
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+ (
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∂θ
)⊤(
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k)

∂W∗
k
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∂LDk

(θ,W∗
k,ϕ

∗
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+ (
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∂LDk

(θ,W∗
k,ϕ

∗
k)

∂W∗
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by evaluating the performance on the validation set of dif-
ferent values of hyperparameters. Meanwhile, we use data
augmentation in the training stage, like random color aug-
mentations and random crops. And for MDL, we need to
train a separate model on the eight seen datasets, and the
train hyperparameters as mentioned above is shown in the
last line of the Table 1.

In addition, we use the same setting in the upper-layer
optimization of our model 2L_Meta as MDL, and in the
lower layer, the learning rate is consistent with the upper
layer at each iteration, and the number of update steps is 2.

3. More results

3.1. Performance of SDLs on Meta-dataset

We use the eight SDLs to perform intra-domain general-
ization and inter-domain generalization, that is to evaluate
each SDL on each subdataset from Meta-Dataset. And We
compute and compare the average performance. See the Ta-
ble 2, and we can find that the optimal model of the specific

dataset is the model trained by the dataset or the ImageNet
model. We can also see that the SDL trained by ImageNet
outperforms other SDLs substantially, which may be due to
the large number and variety of images in ImageNet.

3.2. Impact of the subspace dimension on general-
ization

In our method, the subspace dimension, i.e., the rank
m of the basis vector matrix W is a hyperparameter to
be tuned. The results of different m on Meta-Datasets are
shown in the Table 3. We find that settings with larger pa-
rameter values give better results than smaller values, prob-
ably because subspaces with higher dimensioncontain more
feature information, while too high value leads to over-
fitting.We use 384 in our model.

3.3. Impact of gradient update step number in the
lower-layer optimization.

Number of steps for gradient update in the lower layer of
our meta-problem is set as a hyperparameter n. The results



Table 1. Training hyperparameters of multiple SDLs and MDL on Meta-Dataset. The first column represent different SDLs on different
subdataset of Meta-Dataset.

Model Learning rate Weight decay Annealing frequency Batch size Max iteration

ImageNet 3× 10−2 7× 10−4 48000 64 480000
Omniglot 3× 10−2 7× 10−4 3000 16 5000
Aircraft 3× 10−2 7× 10−4 3000 8 5000
Birds 3× 10−2 7× 10−4 3000 16 5000
Textures 3× 10−2 7× 10−4 1500 32 5000
Quick Draw 1× 10−2 7× 10−4 48000 64 480000
Fungi 3× 10−2 7× 10−4 1500 32 480000
VGG Flower 3× 10−2 7× 10−4 1500 8 5000

MDL 3× 10−2 7× 10−4 48000 64 240000

Table 2. Results of all SDLs. Mean accuracy and 95reported. All results are obtained during meta-testing phase. The test tasks of the
domain corresponding to the trained model for each column belong to in-domain generalization, while the remaining domains are out-of-
domain generalization. We also report overall accuracy for all domains.

DatasetModel ImageNet Omniglot Aircraft Birds Textures Quick Draw Fungi VGG Flower

ImageNet 55.78 ± 1.0 16.01± 0.5 21.18± 0.7 26.26± 0.8 26.00± 0.8 22.53± 0.7 32.30± 0.9 24.5± 0.8
Omniglot 65.73± 1.3 93.20 ± 0.5 56.87± 1.3 57.75± 1.2 54.37± 1.3 77.24± 1.0 56.20± 1.2 54.0± 1.2
Aircraft 49.77± 0.9 17.37± 0.5 85.74 ± 0.5 29.48± 0.7 23.72± 0.6 25.48± 0.7 31.08± 0.7 24.5± 0.6
Birds 70.43± 0.8 13.51± 0.5 19.14± 0.7 71.24 ± 0.9 22.80± 0.7 17.59± 0.7 43.16± 0.9 27.4± 0.8
Textures 72.95 ± 0.6 29.19± 0.5 41.32± 0.6 42.73± 0.6 60.40± 0.7 39.40± 0.7 57.27± 0.7 42.1± 0.7
Quick Draw 55.20± 0.9 52.53± 0.9 40.22± 1.0 38.66± 0.9 41.59± 1.0 82.81 ± 0.6 35.57± 0.9 39.5± 1.1
Fungi 42.72± 1.1 9.80± 0.5 13.10± 0.6 25.70± 0.9 17.59± 0.8 11.92± 0.6 65.78 ± 0.9 23.4± 0.7
VGG Flower 86.96 ± 0.6 23.66± 0.6 47.03± 0.8 63.74± 0.8 49.23± 0.9 35.32± 0.8 79.70± 0.7 78.2± 0.6
Traffic Sign 48.28 ± 1.0 16.27± 0.6 33.92± 0.9 35.65± 0.9 37.54± 1.0 30.79± 1.0 26.77± 0.7 30.3± 0.8
MSCOCO 51.99 ± 1.0 14.41± 0.6 20.10± 0.7 25.17± 0.8 26.57± 0.9 19.39± 0.8 30.21± 0.9 25.6± 1.8
MNIST 78.00± 0.6 92.82 ± 0.4 67.94± 0.7 78.18± 0.6 72.39± 0.7 87.61± 0.5 66.03± 0.7 72.9± 0.7
CIFAR-10 69.64 ± 0.7 29.89± 0.6 38.53± 0.7 39.60± 0.7 40.78± 0.7 38.37± 0.7 37.03± 0.7 40.3± 0.8
CIFAR-100 58.56 ± 1.0 13.56± 0.7 23.24± 0.8 29.81± 0.9 29.12± 0.9 23.62± 0.9 27.02± 0.9 29.0± 1.0

Average 61.7 32.5 39.2 43.40 38.62 39.4 45.6 39.4

Table 3. Quantiative analysis of subspace dimension. on Meta-
Dataset.

Datasetdimension m 256 320 384 446

In-domain 72.54 74.31 79.72 77.39
Out-of-domain 53.32 63.54 69.35 68.97
Average 65.15 70.17 75.73 74.15

of different n on Meta-Datasets are shown in the Table 4. A
good choice for our model is n = 2 according to attempts
already made
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