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This supplementary material provides the implementa-
tion details of GraphSCNet and the baselines (Appx. A),
the details of the metrics (Appx. B), more experiments and
analysis (Appx. C), the details of N-ICP to estimate the
warping function (Appx. D), and discusses the limitations
of our method (Appx. E).

A. Implementation Details

Network architecture. In the initial feature embedding,
we use a three-layer MLP with (256, 256, 256) channels to
project the correspondence embedding to a high-dimension
representation. Group normalization [12] and LeakyReLU
are used after each layer in the MLP.

Unless otherwise noted, we use 3 correspondence em-
bedding modules to generate the spatial-consistency-aware
features, while each contains 2 SCA-SA modules. All lay-
ers in the models have d = 256 feature channels. The node
coverage is σn = 0.08m. For each correspondence, we
use k = 6 neighboring nodes to construct the graph. And
the distance tolerance when computing spatial consistency
is σd = 0.08m.

At last, we adopt another three-layer MLP with (128, 64,
1) channels to classify each correspondences. Group nor-
malization [12] and LeakyReLU are used after the first two
layers in the MLP, and sigmoid activation is applied after
the last layer. We select the correspondences whose confi-
dence scores are above τs = 0.4 as inliers and the others are
removed as outliers.
Baselines. For the baseline models PointCN [9] and
PointDSC [1], the initial feature embedding and the classi-
fication head are the same as aforementioned. In PointCN,
we replace the correspondence embedding modules with
6 MLP blocks, each of which consists of two linear lay-
ers with residual connection. In PointDSC, we use 6 SC-
NonLocal [1] modules to learn the correspondence features.
Due to memory limit, we randomly sample 2048 input cor-
respondences in PointDSC. The architectures of different
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models are illustrated in Fig. 1. All the layers in the base-
line models have 256 feature channels as in GraphSCNet.
Training and testing. We implement and evaluate our
method with PyTorch [10] on an NVIDIA 2080Ti GPU. The
models are trained with Adam optimizer [4] for 40 epochs.
The batch size is 1 and the weight decay is 10−6. The learn-
ing rate starts from 10−4 and decays exponentially by 0.05
after each epoch. During training, we regard the correspon-
dences as inliers if their residuals under the ground-truth
deformation are below τ = 0.04m, and outliers otherwise.
For data augmentation, we adopt a relatively weak data aug-
mentation as in [13] with a random rotation sampled from
[0, 10◦] and a random translation sampled from N (0, 0.05).

In the experiments on 4DMatch, as the training data has
been used to train the correspondence extractor, the puta-
tive correspondences on the training set are almost all in-
liers. In this case, the training data cannot provide effective
supervision to train an outlier rejection network. To solve
this problem, we split the official validation sequences by
90%/10% for training/validation, respectively, and evaluate
the models on the official testing squences.

B. Metrics
Following [7], we mainly evaluate our method using 4

metrics: 3D End Point Error, 3D Accuracy Strict, 3D Accu-
racy Relaxed and Outlier Ratio.

3D End Point Error (EPE) measures the average error
over all warped points under the estimated and the ground-
truth warping functions W(·) and W∗(·):

EPE =
1

|P|
∑
pi∈P

∥W(pi)−W∗(pi)∥2. (1)

3D Accuracy Strict (AccS) and 3D Accuracy Relaxed
(AccR) measure the fractions of points whose EPEs are be-
low a EPE threshold or relative errors are below a relative
error threshold. For AccS, the EPE threshold is 2.5cm and
the relative error threshold is 2.5%. For AccR, the EPE
threshold is 5cm and the relative error threshold is 5%. The
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Figure 1. Network architecture.

relative error is computed as:

RE(pi) =
∥W(pi)−W∗(pi)∥2
∥W∗(pi)− pi∥2

. (2)

And the 3D accuracy is defined as:

AccS=
1

|P|
∑
pi∈P

JEPE(pi)<2.5cm∨RE(pi)<2.5%K, (3)

AccR=
1

|P|
∑
pi∈P

JEPE(pi)<5cm ∨ RE(pi)<5%K, (4)

where J·K is the Inversion bracket.
Outlier Ratio (OR) measures the fraction of points which

are not successfully registered. Following [7], a point is
regarded as a failure if its relative error is above 30%:

OR =
1

|P|
∑
pi∈P

JRE(pi) > 30%K (5)

C. Additional Experiments

C.1. Evaluations on Low-Inlier-Ratio Cases

To evaluate the performance in low-inlier-ratio scenar-
ios, we add random outliers into the correspondences from
GeoTransformer, making the final inlier ratio less than 30%.
In Tab. 1, PointDSC and PointCN fail to achieve reasonable
registration results due to enormous outliers. In contrast,
our method still achieves promising results, showing strong
generality to low-inlier-ratio cases.

C.2. Evaluations on Large-Deformation Cases

Next, we investigate the performance when the deforma-
tions are large. As there is no off-the-shelf benchmarks with
large deformations, we evaluate our method on the testing
pairs whose mean residuals are above 15cm on 4DMatch. In
Tab. 2, our method significantly outperforms the baselines,
demonstrating its efficacy under large deformations.



Model 4DMatch 4DLoMatch
Prec Recall AccS AccR Prec Recall AccS AccR

GraphSCNet 91.9 69.7 54.5 66.5 81.8 70.6 26.9 38.6
PointDSC 55.3 81.5 5.8 12.7 50.6 74.6 4.8 10.5
PointCN 44.8 85.1 3.1 10.4 42.3 74.8 3.4 8.9
w/o outlier rejection 29.3 100.0 0.5 1.9 25.7 100.0 1.0 2.9

Table 1. Evaluations on 4DMatch and 4DLoMatch with low inlier
ratios.

Model 4DMatch 4DLoMatch
Prec Recall AccS AccR Prec Recall AccS AccR

GraphSCNet 89.1 93.8 57.1 71.5 77.8 78.4 28.6 42.7
PointDSC 83.3 90.5 53.6 68.7 66.4 76.7 25.7 40.1
PointCN 80.0 87.5 51.1 67.0 62.4 75.5 23.3 38.4
w/o outlier rejection 76.4 100.0 51.7 68.3 56.2 100.0 23.5 38.9

Table 2. Evaluations on 4DMatch and 4DLoMatch with large de-
formations.

Model 4DMatch 4DLoMatch
Prec Recall AccS AccR Prec Recall AccS AccR

(a.1) Euclidean 92.2 96.9 72.3 84.4 82.6 86.8 41.0 58.3
(a.2) Geodesic 91.2 96.4 71.1 83.5 80.7 85.6 39.8 57.4

(b.1) XYZ+Fourier 92.2 96.9 72.3 84.4 82.6 86.8 41.0 58.3
(b.2) XYZ 92.2 96.6 72.3 84.4 82.1 86.1 40.8 58.0
(b.3) Fourier 91.3 97.2 71.9 84.2 79.8 87.1 40.2 57.5

(c.1) w/ FL w/ CL* 92.2 96.9 72.3 84.4 82.6 86.8 41.0 58.3
(c.2) w/ FL w/o CL 90.5 96.4 71.3 83.7 77.5 84.4 38.5 55.8
(c.3) w/ BCE w/o CL 79.5 93.1 64.3 78.2 55.4 75.4 28.2 44.1

(d.1) w/ local SC 92.2 96.9 72.3 84.4 82.6 86.8 41.0 58.3
(d.2) w/o local SC 90.5 97.0 71.3 83.6 78.9 88.7 39.6 56.9

Table 3. Additional Ablation studies on 4DMatch and 4DLo-
Match. Asterisk (*) indicates the default settings in our method.
FL: focal loss. CL: consistency loss. BCE: binary cross-entropy
loss. Boldfaced numbers highlight the best and the second best
are underlined.

C.3. Additional Ablation Studies

Euclidean distance vs. geodesic distance. We first re-
place the distance metric in building deformation graph
from Euclidean distance to geodesic distance. Each corre-
spondence is assigned to its k = 6 nearest neighbors in the
geodesic space. Note that we still use Euclidean distance
during N-ICP for fair comparison. As shown in Tab. 3 (a),
geodesic distance consistently degrades the performance.
Compared to the Euclidean distance, the geodesic distance
is less robust to occlusion as the points on the geodesic
shortest path between two points can be missing. On the
contrary, according to local rigidity, Euclidean distance is
approximatedly preserved near each graph node, but is more
robust and efficient.
Positional embedding. Next, we study the impact of the
positional embedding used in the initial feature embedding
in Tab. 3 (b). We first ablate the the fourier positional encod-
ing and use only the point coordinates. This model achieves

Figure 2. Feature distribution of inliers.

similar results on 4DMatch and slightly worse results on
4DLoMatch. We then ablate the point coordinates and use
only the fourier positional encoding. This model achieves
better recall but worse precision, especially in low-overlap
scenarios. And the model with the both terms achieve the
best results.

Loss functions. We further study the efficacy of the loss
functions in Tab. 3 (c). We first ablate the feature consis-
tency loss, which degrades the classification performance
especially in low-overlap scenarios. Explicitly supervis-
ing the feature consistency between correspondences helps
learn more discriminative features between inliers and out-
liers and thus contributes to better performance. Next we re-
place the binary focal loss with a binary cross-entropy loss,
which significantly decreases the performance. As the puta-
tive correspondences are commonly extremely unbalanced,
either predominated by inliers or outliers, cross-entropy loss
hampers the convergency of the model.

Local spatial consistency. At last, we ablate the local spa-
tial consistency in the self-attention. In Tab. 3 (d), removing
the local spatial consistency considerably decreases the per-
formance, especially in low-overlap scenarios. We also note
that this model surpasses PointCN and PointDSC, indicat-
ing the efficacy of our deformation graph-based design.

C.4. Qualitative Results

We visualize the features of the detected true inliers by
t-SNE. In Fig. 2, the inliers in different parts have differ-
ent features, while the spatially-near ones also lie closely
in the feature space. These results indicate that our method
effectively learns the local motions in different parts.

We then provide more qualitative comparisons of the fil-
tered correspondences on 4DMatch (Fig. 3), CAPE (Fig. 5)
and DeepDeform (Fig. 4). Benefitting to the powerful lo-
cal spatial consistency, GraphSCNet removes more outlier
correspondences and achieves better inlier ratio (precision)
than the baseline methods, especially under large defor-
mations. Moreover, albeit achieving promising precision,
PointDSC fails to preserve sufficient inliers. On the con-
trary, our method achieves both high precision and high re-
call, indicating it can effectively reject most outliers while
better preserving inliers.



D. Deformation Estimation
Given the source point cloud P , the target point cloud Q,

and the correspondences C = {(xi,yi) | xi ∈ P,yi ∈ Q}
between them, we adopt embedded deformation [11] to for-
mulate the warping function. It parameterizes the defor-
mation on the deformation graph G = {V, E}. The graph
nodes V are sampled from the source point cloud with
uniform furthest point sampling and the node coverage is
σg = 0.08m. Each point pi in the source point cloud is
assigned to its kg = 6 nearest nodes Ki. Two nodes are
connected by an undirected edge if they share a common
point. Each node vj is associated with a local rigid trans-
formation {Rj , tj}. And the warping function W is then
approximated as:

W(pi) =
∑
vj∈V

αi,j

(
Rj(pi − vj) + tj + vj

)
,

where αi,j is the skinning factor as defined in [8]:

αi,j = Jvj ∈ KiK ·
exp(−∥pi − vj∥2/(2σ2

n))∑
vk∈Ki

exp(−∥pi − vk∥2/(2σ2
n))

,

where J·K is the Iverson bracket. We then solve for W by
minimizing the following objective function:

E = λcEcorr + λrEreg,

where Ecorr is the mean squared residual between the corre-
spondences and Ereg is an as-rigid-as-possible [3] regular-
ization term to constrain the smoothness of deformations:

Ecorr =
∑

(xi,yi)∈C

∥W(xi)− yi∥22,

Ereg =
∑

(vu,vv)∈E

∥Ru(vv − vu) + vu + tu − (vv + tv)∥22.

The weights to balance the two terms are set to λc = 25 and
λr = 1, respectively.

This problem can be efficiently solved by Non-rigid ICP
(N-ICP) algorithm [5, 11]. Following [2, 6], we update the
associated rigid transformations incrementally:

R
(t)
j = ∆R

(t)
j ·R(t−1)

j ,

t
(t)
j = t

(t−1)
j +∆t

(t)
j ,

where R
(0)
j = I and t

(0)
j = 0. For simplicity, we

omit the superscript (t) in the following text. The resid-
ual rotations are formulated in the axis-angle representa-
tion ∆Rj= exp(ω∧

j ), where exp(·) is the exponential map
function and (·)∧ computes the skew-symmetric matrix of
a 3-d vector. We then solve for {ωj ,∆tj} with Gauss-
Newton algorithm. The residual terms are computed as:

ricorr=
√

λc

(
W(xi)− yi

)
,

rireg=
√
λr

(
Ru(vv − vu) + vu + tu − (vv + tv)

)
.

where ci = (xi,yi) ∈ C and ei = (vu,vv) ∈ E .
Next, we compute the partial derivatives of {ωj ,∆tj}.

As ωj is a residual rotation, it is expected to near 0 and thus
we approximate its partial derivatives with those at 0:

∂W(pi)

∂ωj
≈ ∂W(pi)

∂ωj


0

= −αi,j

(
R

(t−1)
j (xi − vj)

)∧
,

∂W(pi)

∂∆tj
= αi,jI.

To this end, the partial derivatives are computed as:

∂ricorr

∂ωj
= −

√
λcαi,j

(
R

(t−1)
j (xi − vj)

)∧
,

∂ricorr

∂∆tj
=

√
λcαi,jI,

∂rireg

∂ωu
= −

√
λr

(
R(t−1)

u (vv − vu)
)∧

,

∂rireg

∂∆tu
=

√
λrI,

∂rireg

∂∆tv
= −

√
λrI.

We denote the collection of the residual terms as:

r = [(r1corr)
T , ..., (r|C|corr)

T , (r1reg)
T , ..., (r|E|reg )

T ]T ∈ R3|C|+3|E|,

the collections of variables {ωj ,∆tj} as:

∆T = [ωT
1 , ...,ω

T
|V|,∆tT1 , ...,∆tT|V|]

T ∈ R6|V|,

and the Jaccobian matrix between r and ∆T is denoted as
J∈R(3|C|+3|E|)×(6|V|) following the computation of deriva-
tives above. ∆T can then be computed by solving the linear
system:

(JTJ+ λmI)∆T = JT r.

where λm = 0.01 is the Marquardt factor.

E. Limitations

Our method could have the following two potential lim-
itations. First, our method serves as a post outlier rejec-
tion step after the correspondence extractor. To this end,
our method is able to make given correspondences as clean
as possible, but cannot infer new correspondences and im-
prove the coverage of the correspondences on point clouds.
Second, our method is based on deformation graph and
local rigidity of deformations, so it could have difficulty
in modeling sudden changes of geometric structures. We
would leave these for future work.
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(a) w/o Outlier Rejection (b) PointCN (c) PointDSC (d) GraphSCNet (e) Ground Truth

Inlier ratio: 51.7 Precision: 60.9
Recall: 92.3

Precision: 88.9
Recall: 98.3

Precision: 61.4
Recall: 94.0 # Inliers: 686

Figure 3. Comparison of different methods on 4DMatch and 4DLoMatch.

(a) w/o Outlier Rejection (b) PointCN (c) PointDSC (d) GraphSCNet (e) Ground Truth

Inlier ratio: 54.4 Precision: 61.6
Recall: 92.4

Precision: 62.9
Recall: 85.9

Precision: 85.0
Recall: 86.4

Inlier ratio: 42.8 Precision: 65.5
Recall: 69.6

Precision: 47.7
Recall: 33.5

Precision: 90.6
Recall: 85.4

Inlier ratio: 42.6
Precision: 42.6

Recall: 43.0
Precision: 89.0

Recall: 20.4
Precision: 90.6

Recall: 89.7

# Inliers: 184

# Inliers: 158

# Inliers: 397

Figure 4. Comparison of different methods on DeepDeform.
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