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Appendix 1
Theorem 1. For any two points xi and xj on the point
cloud model, their neighborhood matrices are Xis, Xjs,
and their Gram matrices areG(Xis), G(Xjs), respectively.
If G(Xis) and G(Xjs) is close, which ensures that the dif-
ference of their F -norms is equal to or less than a fixed
value, i.e.,

‖G (Xis)−G (Xjs) ‖F ≤
σ2
C(Xis)

2
(1)

then there exists a rotation matrix R such that the below
inequality also holds.

min
R
‖Xis −RXjs‖F ≤

√
2σC(Xis)

2
(2)

Namely, the minimal F -norm difference between Xis and
rotated Xjs is also equal to or less than a value related to
σC . Here, σC is the minimum singular value of the matrix
Xis, ‖X‖F =

√
Tr (XTX).

Proof. For two neighborhood matrices Xis, Xjs (Xis, Xjs

∈ R3×k, k ∈ N+) composed of any two points xi and xj , if
the inequality Eq. (1) is guaranteed, then the left side of in-
equality Eq. (2) satisfies the following inequality (according
to Theorem 3.2 in Pumir et al. [12]).

min
R
‖Xis −RXjs‖F ≤

σC (Xis)√
2

(
1−

√
1− 2‖G (Xis)−G (Xjs) ‖F

σ2
C (Xis)

)
(3)

Suppose minR ‖Xis −RXjs‖F ≤ ρσC(Xis), where ρ is
an undetermined coefficient. If the inequality Eq. (2) holds,
then the following inequality Eq. (4) is required to be valid,

∗Corresponding author.

σC (Xis)√
2

(
1−

√
1− 2‖G (Xis)−G (Xjs) ‖F

σ2
C (Xis)

)
≤ ρσC(Xis)

(4)

By simplification, it follows

1−
√

2ρ ≤

√
1− 2‖G (Xis)−G (Xjs) ‖F

σ2
C (Xis)

(5)

Obviously, when ρ ≥
√
2
2 , the above inequality always

keeps. We choose ρ =
√
2
2 to let minR‖Xis −RXjs‖F

satisfy the minimum upper bound. Namely, the inequal-
ity Eq. (2) is valid when ‖G (Xis) − G (Xjs) ‖F ≤
σ2
C(Xis)

2 .

Appendix 2
Geometric Interpretation of Theorem 1. For two points
xi and xj with their neighborhood matrices Xis and Xjs,
if there exists a rotation (or reflection) matrix R satisfying
with Theorem 1, then we can conclude the geometric struc-
tures consisting of two points and their neighbors are sim-
ilar. For example, given the geometric design, the orange
region (red point with its neighbors shown in an auxiliary
Fig. 1 [25]) is similar to the blue region (blue points with
their corresponding neighbors)*

The advantage of finding similar points in the geomet-
ric space is that more information can be collected espe-
cially when point clouds are sparse. As for the compari-
son shown in Fig. 2, the traditional feature extraction with

*Although the way of finding points is similar to GS-Net [25], the net-
work architecture and experiments results of our NLGAT are superior to
those by GS-Net [25].
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Figure 1. Geometric interpretation of Thm 1 on point clouds. Figure 2. Node neighborhood feature aggregation process [6].

progressive feature aggregation involves many points in the
flat region, which is equivalent to adding noise to the aggre-
gated points during the feature computation, and the simi-
lar faraway points will be scoped by stacking hundreds of
network layers, while our method can directly find similar
points according to the condition of Theorem 1.

Appendix 3
The detailed steps of multi-scale Gram matrices con-

struction are described in the following algorithm 1*.

Appendix 4
A series of feature representations are obtained through

the following aggregation operations with a Gram matrix
input. 

Eii = hθ (xi, xi)

Eij = hθ (xi, xij)

Eit = hθ (xi, xit)

(6)

where hθ : RC × RC → RC
′

is the feature aggregation
function, C

′
is the feature dimensional, θ is the learnable

parameter. Eii is the self-feature learning, Eij (1 ≤ j ≤
k) is the first-order neighborhood feature learning, and Eit
(1 ≤ t ≤ k−1) is the feature learning of ssimilar geometric
structures in the space without the first-order neighborhood.

The learned features (Eq. (6)) are then fused by a single-
layer convolutional network and normalized by using the
Softmax function to generate attention coefficients as fol-
lows. αij =

G(Eii+Eij)∑
j G(Eii+Eij)

αit = G(Eit)∑
j G(Eii+Eij)+

∑
t G(Eit)

(7)

where G(·) = eLeakyReLU(·), and LeakyReLU(·) is the non-
linear activation function Leaky ReLU.

*Note that for a sparse point cloud with only 8 points, a Gram matrix is
directly input to the network for feature learning during the experiments.

Appendix 5

Experimental settings. The experimental results are eval-
uated on a server with NVIDIA Tesla K80 GPU. We refer
to other classification methods for each experiment to nor-
malize the point cloud model into the standard [−1, 1] as
the network input. We optimize the network with Adam op-
timizer and use the cross-entropy as the loss function. The
main parameters in NLGAT are set as shown in Tab. 1. In
addition, the three main convolution kernels in NLGAT are
listed as follows.

• If the data input size is 2k × 2k × N , the size of the
convolution kernel is 3×3×N , the number of convolu-
tion kernel is N , stride=4, padding=0, and the output
size is b

(
2k−3

4 + 1
)
×
(
2k−3

4 + 1
)
× Nc (stride= 4,

padding= 0).

• If the data input size is 1×N , the size of the convolu-
tion kernel is 1 × 1, the number of convolution kernel
is 1024, and the output size is 1024×N .

• In other cases, the data input size is 3 × N . The size
of the convolutional kernel is 3× 1, and the number of
convolutional kernel is 1024. The output size is 1024×
N .

Hyper-parameter Value

Window sizes of 2D Conv Layers 3/3
Values k in two k-max pooling Layers 2/2
Label Smoothing 0.20
Learning Rate 0.02
Batchsize 16
Max Epoch 200
Decay Step 200000
Decay Rate 0.70

Table 1. Hyper-parameters in NLGAT



Algorithm 1: Multi-scale Gram Matrices Construction Based on Local Information Entropy

Input: Point cloud: X ∈ R3×N , points:N , neighborhood ranges k : 4 points.
Output: Multi-scale Gram matrices: Gk(X)

1 for i = 1 : N do
2 for k = 4 : 4 : 64 do
3 neighbor ← KNN(xi)(xi ∈ X);
4 M ← 1

|neighbor|
∑|neighbor|
j=1 (neighborj − x̄) (neighborj − x̄)

T ; /* x̄ is the neighborhood

centroid coordinates of the current point. */
5 λ1, λ2, λ3 ← SV D (M) ; /* SVD is the eigenvalue decomposition. */
6 Compute the spatial distribution features.

a1D =

√
λ1 −

√
λ2√

λ1
, a2D =

√
λ2 −

√
λ3√

λ1
, a3D =

√
λ3√
λ1
.

7 Compute the local information entropy of current point xi when its neighborhood size is k.

Hi(k) = −a1D ln (a1D)− a2D ln (a2D)− a3D ln (a3D) .

8 end
9 end

10 The three optimal neighborhood ranges klop(l = 1, 2, 3) are obtained from the local information entropy of all points.

klop ← arg min3

k={4:4:64}

{
max

k={4:4:64}
{Hi(k)} , i = 1, 2, · · ·N

}
where arg

k
min3H(k) denotes finding the three dependent variables k that obtain the minimum, the second

minimum and the third minimum values of the function H(k).
11 Construct three multi-scale Gram matrices Gk(X)(k ∈ {k1op, k2op, k3op}).

Appendix 6

For a point cloud model X , the noise point x̂i is gener-
ated by adding Gaussian noise Y ∼ N (0, σ) to any point
xi: x̂i = Y + xi, as shown in Fig. 3.

Figure 3. The noise injection effect of the dense point cloud (1024
points) and sparse point cloud (64 points) with different Gaussian
noise parameters, where black points are the original input point
cloud, green points are the noise injection results when the stan-
dard deviation is 0.04, and red points are the noise injection results
when the standard deviation is 0.1.

Appendix 7
Tab. 2 provides a comparison of the parameter size and

inference times of various network models, with a list of
network design considerations. Most methods consider
only one or several states of point clouds for the network
design, with fewer network parameters and shorter infer-
ence times. For example, the inference time of DGCNN
with STN [19] increases to 22.7ms, and the inference
speed drops to 0.08M/ms compared with DGCNN with-
out STN. Considering the generalization ability of complex
point clouds, our NLGAT is designed with many matrix cal-
culation and feature extraction modules, resulting in more
network parameters and a longer reasoning time. Although
the parameter complexity of NLGAT is high under the cur-
rent hardware devices, the inference speed of NLGAT is
competitive with other methods on multiple states.

Appendix 8
Classification Results for Point Clouds with Noise. Fig. 4
shows the best classification result achieved in the Model-
Net40 dataset (with 1024 points) when the Gaussian noise



Model Network design considerations Params (M) Time (ms) Speed (M/ms)

MVCNN [17] U 60.00 45.00 1.33
PointNet [13] U 3.50 2.10 1.67
PointNet + (MSG)(PointNet++) [14] U 1.70 192.00 0.01
DGCNN(without STN) [19] U 1.80 5.30 0.34
DGCNN [19] U, R 1.80 22.70 0.08
PCA-RI [22] U, R 4.20 35.00 0.12
GLR-Net [28] U, R 1.50 29.00 0.05
ERI-Net [4] U, R 1.50 5.70 0.26
Triangle-Net [21] U, R, S, N 2.00 6.90 0.29
NLGAT U, R, S, N 62.60 183.10 0.34

Table 2. Model size and inference time (where four letters in network design considerations indicate the states of point clouds, i.e.,
unorderedness (U), rotation(R), sparsity(S), noise(N)).

Figure 4. The classification results of different methods in the
ModelNet40 dataset with Gaussian noise.

parameter varies from 0.01 to 0.05. It can be seen that the
classification results of most methods [2, 3, 5, 7, 8, 10, 13,
14, 16, 18–20, 23, 24, 27] are below 80%, while Triangle-
Net [21] and our NLGAT achieve a classification perfor-
mance above 90%.

Appendix 9

Training on CAD and Testing on ScanObjectNN. Fig. 5a
shows that the classification results of most methods [1, 9,
13, 14, 19, 26] on five subsets(including background points)
of ScanObjectNN are only about 30%, while the average
result of our method is 51.62%. Although the average clas-
sification results of NLGAT on various subsets of ScanOb-
jectNN are improved by 21.62%, this result (57.5% ob-
tained on the OBJ BJ subset) is not high compared with
the results trained and tested on the CAD dataset (94.2%
obtained on the ModelNet40). In conclusion, although NL-

GAT has a better generalization ability than the other meth-
ods in the current training mode, the data mapping relation-
ship between the training dataset and the test dataset signif-
icantly impacts the network training.
Training on ScanObjectNN and Testing on CAD. Fig. 5b
provides the results on the 11 corresponding categories be-
tween two datasets to verify the above conclusion. Com-
pared with the results of subset PB T50 RS in Fig. 5a, the
classification results of NLGAT are improved by 26.9% in
the current training mode, and some categories can even
reach an accuracy of over 90%. The average accuracy of
NLGAT is 73.9%, which is 19.14% higher than the second-
best result (DGCNN: 54.76%). These experimental results
support our previous experimental conclusion that classifi-
cation results would be improved when there is a more rel-
evant mapping relationship between the data in the training
and test datasets. Therefore, we train and test the real-world
dataset ScanObjectNN to validate the network classification
ability of NLGAT further.

Appendix 10

Comparison of Six Subsets of ScanObjectNN. Fig. 6
shows the classification results in the dataset ScanObjectNN
with different subsets. It can be seen that the classifica-
tion accuracy of NLGAT is significantly improved com-
pared with other methods, and the classification results are
above 88% of all datasets. In particular, it reaches 95.0% on
the dataset OBJ ONLY and 94.2% on the dataset PB T25.
In addition, our result is 91.8% on the dataset PB T25 R,
which outperforms the PointCNN method (82.5%) by
9.3%, and the result (88.8%) by NLGAT has an 8.8% im-
provement compared with the result (80.0%) of DGCNN on
the dataset PB T50 R. Note that the classification results in
the harshest test scenario PB T50 RS are decreased com-
pared with the dataset OBJ BJ. DGCNN has only a 78.1%
accuracy on the dataset PB T50 RS and an 82.8% accuracy



(a) Mode1: Training on ModelNet40 and Testing on ScanObjectNN.

(b) Mode2: Training on ScanObjectNN and Testing on ModelNet40.

Figure 5. Comparison of generalization ability of the network
based on the classification accuracy (unit: %).

on the dataset OBJ BJ. NLGAT has an 88.4% accuracy on
the dataset PB T50 RS, which is a 3.8% reduction com-
pared with the result (92.2%) on the dataset OBJ BJ.
Comparison of Subset PB T50 RS of ScanObjectNN.
Tab. 3 shows the overall classification accuracy(OA) re-
sults of some SOTA methods on the dataset PB T50 RS.
Experiments have shown that our result (88.4%) is supe-
rior to the results of PointMLP (85.4%) [11] and PointNeXt
(87.7%) [15].

Methods OA(%)
PointNet [13] 68.2

PointNet++ [14] 77.9
DGCNN [19] 78.1

PointMLP [11] 85.4
PointNetXt [15] 87.7

NLGAT 88.4

Table 3. Comparison of overall classification accuracy (unit: %)
in Subset PB T50 RS of ScanObjectNN.

Figure 6. Comparison of overall classification accuracy (unit: %)
when training and testing are done on ScanObjectNN, where the
different colors correspond to six subsets, each axis represents the
methods, and the axis coordinates are counted separately.
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