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This appendix will provide further details for the main
paper, including more experimental results (Appendix A),
basic knowledge of causal graph (Appendix B), a proof of
Equation 6 in the main paper (Appendix C) and more im-
plementation details (Appendix D).

A. Additional Results
Tab. 1 shows additional results on ImageNet-Full for 25

incremental tasks. We observe that our approach boosts the
accuracy of LUCIR by 5.39% and reduces the correspond-
ing forgetting by 1.11%. The curves of average incremental
accuracy and forgetting rate are also given in Fig. 1. Our ap-
proach when combined with LUCIR, achieves a smoothly
and slowly decreasing curve of accuracy and the corre-
sponding increasing curve of forgetting. In addition, we plot
curves of the forgetting rate on CIFAR-100 and ImageNet-
Sub for 5, 10, and 25 incremental tasks, as shown in Fig. 3.
It can be observed that our approach suffers from less for-
getting in most tasks.

Method LwF BiC iCaRL LUCIR GeoDL iCaRL+ours LUCIR+ours

Accuracy (%) 36.87 53.47 43.14 56.56 62.20 41.30 -1.84 61.95 +5.39
Forgetting (%) 49.84 33.17 38.80 30.30 15.11 33.59 -5.21 14.00 -1.11

Table 1. The average incremental accuracy and the forgetting rate
on ImageNet-Full for 25 incremental tasks. 20 exemplars are used
per class.

B. Basic Knowledge of Causal Graph
B.1. Causal Graph

As shown in Fig. 2, there are three basic causal config-
urations in causal theory: chain, collider, and fork, which
consist of more complex causal graphs. Chain is a con-
figuration of variables which contains three nodes and two
edges with one edge directed into and one edge directed out
of the middle variable, as shown in Fig. 2 (a). Collider with
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Figure 1. The curves of accuracy and forgetting on ImageNet-Full
for 25 incremental tasks. 20 exemplars are used for each class.

one node receives edges from two other nodes, is illustrated
in Fig. 2 (b). Fork with two arrows emanating from the
middle variable, is shown in Fig. 2 (c), which is the prime
configuration we consider in the main paper.
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Figure 2. Three basic configurations of causal graphs.

B.2. Conditional independence

[5] summarizes three rules to determine dependen-
cies and independencies of two end nodes in the above-
mentioned three basic configurations. These rules are de-
scribed below, which are easily understood with the help of
Fig. 2.

Rule 1 (Conditional Independence in Chains) Two vari-
ables X and Y are conditionally independent given Z, if
there is only one unidirectional path between X and Y and
Z is any set of variables that intercepts that path.

Rule 2 (Conditional Independence in Colliders) If a
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Figure 3. The forgetting rate on CIFAR-100 and ImageNet-Sub for 5, 10, and 25 incremental tasks. 20 exemplars are used for each class.

variable Z is the collision node between two variables X
and Y , and there is only one path between X and Y , then
X and Y are unconditionally independent but are depen-
dent conditional on Z and any descendants of Z.

Rule 3 (Conditional Independence in Forks) If a vari-
able Z is a common cause of variables X and Y , and there
is only one path between X and Y , then X and Y are inde-
pendent conditional on Z.

According to Rule 3, in causal path X ← T → Y , vari-
able X cannot exert a causal effect on variable Y when con-
ditioned on variable T . Therefore, the spurious correlation
between X and Y , i.e., the task bias, does not exist for task
incremental learning in the main paper . However, the task
identifier T is not conditioned in class incremental learning,
and hence X and Y are likely dependent, causing the task
bias.

B.3. Causal intervention

B.3.1 do-operator

[5] introduces a do-operator do(·). do(X = x) means we
fix X = x while X = x denotes the variable X takes a
value x. As a result, P (Y = y|X = x) is the proba-
bility of Y = y conditional on X = x, whereas P (Y =
y|do(X = x)) is the probability of Y = y when we inter-
vene to make X = x. In our main paper and this appendix,
we simplify P (Y = y|X = x), P (Y = y|do(X = x)) as
P (Y |X), P (Y |do(X), respectively for convenience.

B.3.2 backdoor criterion

Definition 1 (The Backdoor Criterion) Given an ordered
pair of variables (X , Y ) in a directed acyclic graph G, a
set of variables Z satisfies the backdoor criterion relative
to (X , Y ) if no node in Z is a descendant of X , and Z
blocks every path between X and Y that contains an arrow
into X .

The backdoor criterion answers in what conditions the
structure of the causal graph is sufficient for computing a
causal effect from a given data set. [5] points out that if a
set of Z satisfies the backdoor criterion for X and Y , the
causal effect of X on Y is given by

P (Y |do(X)) =
∑
z

P (Y |X,Z)P (Z). (1)

In Fig. 3 (c) of the fork structure, the variable Z is not
a descent of X and it blocks the only path X ← Z → Y
between X and Y . Therefore, Z satisfies the backdoor cri-
terion and the causal effect of X on Y can be calculated by
Eq. (1). In our main paper, we adopt the backdoor criterion
and achieve Equation 3.

C. Proof of Equation 6
Following the work [9] that firstly proposed

NWGM to tackle image captioning task, we substitute
NWGM[Softmax(fy(x,dt))] for Edt

[Softmax(fy(x,dt))].
We denote fy(x,dt) as ny,t and the probability of dt as
P (dt). Combining Softmax(fy(x,dt)) ∝ exp(fy(x,dt)),



Methods Epochs LR LR schedule LR decay rate Weight decay Momentum Batch size Other hyper-parameters

iCaRL 160 (90) 0.1 80 120 (30 60) 0.1 5× 10−4 (1× 10−4) 0.9 128 T = 2.0, β = 0.25
LUCIR 160 (90) 0.1 80 120 (30 60) 0.1 5× 10−4 (1× 10−4) 0.9 128 dist = 0.5,K = 2, rr = 0.0, λlf = 5(10), λmr = 1.0
GeoDL 160 (90) 0.1 80 120 (30 60) 0.1 5× 10−4 (1× 10−4) 0.9 128 dist = 0.5,K = 2, rr = 0.0, λlf = 5(10)
CwD 160 (90) 0.1 80 120 (30 60) 0.1 5× 10−4 (1× 10−4) 0.9 128 dist = 0.5,K = 2, λlf = 5(10), λmr = 1.0

CSCCT 160 (90) 0.4 (0.02) 80 120 (30 60) 0.1 5× 10−4 (1× 10−4) 0.9 128 dist = 0.5,K = 2, λlf = 5(10), λmr = 1.0
CafeBoost 160 (90) 0.1 80 120 (30 60) 0.1 5× 10−4 (1× 10−4) 0.9 128 dist = 0.5,K = 2, rr = 0.0, λlf = 5(10), λmr = 1.0

Table 2. Hyper-parameters for all methods. Values in parentheses are for ImageNet.

we can obtain

Edt
[Softmax(fy(x,dt))]

≈NWGH[Softmax(fy(x,dt))]

=

∏
t exp(ny,t)

P (dt)∑
i

∏
t exp(ni,t)P (dt)

=
exp(Edt

[ny,t])∑
i exp(Edt

[ni,t])

=Softmax(Edt
[fy(x,dt)]),

(2)

i.e, Equation 6 in the main paper.

D. Implementation Details
We adopt a 18-layer ResNet [2] for both CIFAR-100 and

ImageNet. Random cropping and horizontal flipping are
only data augmentations used in training datasets for all the
methods. Details of hyper-parameters of all methods are
listed in Tab. 2. Additional settings of some baseline meth-
ods are described below.

iCaRL [6]: T denotes the temperature for distillation,
set to 2.0. β is the weight coefficient for distillation, set to
0.25. Both classification loss and KD loss use multi-class
cross entropy loss, following [4].

LUCIR [3]: Distance dist and K for margin ranking
loss is set to 0.5 and 2, respectively. The weight of less
forget loss is λlf = 5 for CIFAR-100 and 10 for ImageNet.
Margin ranking loss gains a weight λmr = 1.0 for both
datasets.

GeoDL [8]: We implement GeoDL on the base of LU-
CIR, and thus its corresponding hyper-parameters are the
same as LUCIR. The weight of distillation loss considering
geodesic flow is set to 1.0.

CwD [7]: CwD is also implemented on LUCIR and
its hyper-parameters are mostly the same as LUCIR. For
CIFAR-100, CwD sets the learning rate for first task to 0.1,
whereas 0.2 for ImageNet. The rejection threshold of class-
wise decorrelation loss (LCwD) is 1. The weight of LCwD is
0.5 and 0.75 for CIFAR-100 and ImageNet, respectively.

CSCCT [1]: As a plugin method, CSCCT is plug into
LUCIR by us. The coefficient of cross-space clustering loss
and controlled transfer loss is 3 and 1.5 respectively. The
temperature of controlled transfer loss is set to 2.0.

CafeBoost (ours): Our plugin method can be added on
the base of iCaRL and LUCIR. Therefore, the correspond-

ing hyper-parameters are same as theirs. The causal debias
module is trained for 160(90) epochs in its first training
stage for CIFAR-100 (ImageNet), where the feature extrac-
tor of ResNet is fixed, as shown in Algorithm 1 of the main
paper. Moreover, we update the feature extractor by a learn-
ing rate 0.01 during class incremental phases.

E. Memory and Time Cost
For both CIFAR-100 and ImageNet-Sub with 5 incre-

mental phases, CafeBoost model consumes 49.2 MB mem-
ory space, only 9.4% more than LUCIR (44.9 MB). For
training time using NVIDIA TITAN Xp, CafeBoost re-
quires 5-6 h and 18-22 h training time on CIFAR-100 and
Image-Sub, respectively.
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