
Graph Representation for Order-aware Visual Transformation
(Supplementary Material)

In this supplementary material, we provide additional
implementation details, including details of the proposed
model VTGen, the loss function, and training parameters
used in the experiments to supplement our main submission.
We also provide additional information on the dataset setup
and examples for all change patterns used in the proposed
OVT dataset.

A. Implementation Details
Transformation Encoder. Given the input of two im-

ages, the transformation encoder extracts the correlations
between different image regions between the two images.
We adopted a standard transformer encoder structure in the
implementation of the transformer self-attention operation
Attention (I′ , I′ , I′ ) described in subsection 4.2 of the main
submission. More specifically, we implemented the trans-
former encoder with two layers, four heads, and a feedfor-
ward dimension of 2048.

Cross-attention Decoder. This decoder aims to asso-
ciate image features with change queries to identify indi-
vidual changes. Each change is described in ten words,
which indicate the change type, the attributes of the changed
object (color, material, shape), the before-change position
(described by color, material, shape, or “ground ground
ground”, or “none none none” for add change), and the after-
change position (with three words similar to those used in
the before-change position, where “none none none” is for
delete change), respectively. We also added a change con-
sisting of the word “start” (ten times) to indicate the start of
the change query. Since the max change number of the pro-
posed OVT dataset is four, we set the change query number
to five. For scenes with less than four changes, we added
changes consisting of the word “none” (ten times) to reach
the change query length.

For each image pair consisting of multiple changes, we
first embedded each change to a 1 ×𝐷-dimensional feature
𝑞. More specifically, we used the Pytorch [1] nn.Embedding
function and a standard transformer multi-head attention
layer to encode the ten words to a 10 × 𝐷-dimensional fea-
ture and then summed up the features of all ten words, which
results in a 1 × 𝐷-dimensional change query. During the
training process, we used the change queries obtained from

ground truth change information. During the testing pro-
cess, we first input the “start” change and then updated the
change query by the model output. For the cross-attention
operation Attention (Q, I′′ , I′′ ) described in subsection 4.2
in the main submission, we used a standard transformer with
two layers, four heads, and a 2048 feedforward dimension.

Change Content Decoder. This encoder aims to find
the correlations between different changes and determine the
detailed change contents for each change. We experimented
with two structures, including a transformer and a GCN for
the change content decoder. We implemented a standard
transformer with a feedforward dimension of 2048 and ex-
perimented with varied heads and layers. We implemented
GCN with MLP layers. For each layer of the GCN, we first
concatenated each pair of input feature {𝑞′1, 𝑞

′
2, ..., 𝑞

′
𝑛} and

added a two-layer MLP to encode the paired features, re-
sulting {𝑝1,2, 𝑝1,3, ..., 𝑝𝑛−1,𝑛}, where 𝑝𝑗,𝑘 ∈ ℝ𝐷. Next, we
updated features by 𝑞′′𝑖 =

∑

𝑗=𝑖 ∨ 𝑘=𝑖 𝑝𝑗,𝑘 and then summed
up the obtained features with the original input features of
the current GCN layer to prevent over-fitting. During the
ablation study, we implemented the GCN with varied lay-
ers. Finally, we used ten classification heads to identify the
detailed change contents of each change, where each classi-
fication head consists of two fully-connection layers along
with a softmax function.

Change Oder Decoder. We implemented the change or-
der decoder with the same structure as the change content
decoder, except for the input feature dimension and the clas-
sification heads. We added a classification head to identify
the presence of the directed edges between each pair of two
changes.

Loss Function. We compute the loss for nodes (change
contents) and edges separately, and equation (1) in the main
paper shows the change content part. In the case of a graph-
matching loss setup, we generate changes in a specific or-
der, and then compute the minimal loss across all possible
orders of changes. On the other hand, for the cross-entropy
loss setup, we solely calculate and assess the loss using the
predetermined order of changes provided in the input, dis-
regarding other potential change orders resulting from syn-
chronous changes.

Training Parameters. During the experiments on
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the proposed OVT dataset, we jointly trained all mod-
els together, including the transformation encoder, cross-
attention decoder, change content decoder, and change or-
der decoder. During the experiments on the existing dataset
CLEVR-Multi-Change [2], we removed the change order
decoder and jointly trained the remaining three models.
During all experiments, we set the batch size to 64 and used
the Adam optimizer [3].

B. Dataset Setup
The OVT dataset consists of three basic types of changes:

“add”, “delete”, and “move”. The “add” and “delete”
changes involve adding a new object or removing an existing
one from a visible location within the scene, respectively.
The “move” change is created by relocating an object from
its initial coordinates to a new location. The minimal dis-
tance between two objects (excluding stacked objects) was
set to 1.45, while the side length and diameter for cubes,
spheres, and cylinders were set to 0.8.

This paper discusses the recognition of order-aware
changes from image pairs consisting of asynchronous and
synchronous changes between two images. In the pro-
posed OVT dataset, we set the maximum number of changes
within two images to four. We included a total of 15 change
patterns with specific change numbers and orders in the
OVT dataset. Examples of each change pattern are shown
in Figure 6 and Figure 7.
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Figure 6. All change patterns (a-g) for scenes with one to three changes used in the OVT dataset. Here, the change pattern indicates the
specific number and order of changes. We use circular shapes to indicate changes, with details recorded in dashed boxes and solid gray
arrows to indicate the chronological order between changes.
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Type: add
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Pos0.: _
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Pos1.: ground

Type: add
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Pos0.: ground
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Figure 7. All change patterns (h-o) for scenes with four changes used in the OVT dataset. Here, the change pattern indicates the specific
number and order of changes. We use circular shapes to indicate changes, with details recorded in dashed boxes and solid gray arrows to
indicate the chronological order between changes.
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