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Figure 1. (a): Reflection transformation [2]. (b) 3D view of an
auxiliary plane in the camera coordinate system. R is an auxiliary
plane of a camera ray hs. nr is the unit normal vector of R.

Unlike recent methods of transparent object reconstruc-
tion [3, 7] which aim to reconstruct 3D transparent objects,
our goal is to recover the object surface behind transpar-
ent objects (i.e., glasses). Here, we provide more details of
our method and experiments. Specifically, we provide the
details of the reflection transformation [2] and projection al-
gorithm we adopt in our manuscript (Sec. A), the choice of
the ratio in the linear summation (Sec. B), additional details
of experiments (Sec. C), additional results (Sec. D), addi-
tional analysis (Sec. E) and the future work (Sec. F).

A. Projection Algorithm
Fig. 1 (a) shows an illustration of the reflection transfor-

mation [2]. Suppose a ray is incident on a glass M, the
incident direction is I, the reflected direction is R and the
plane equation of M is defined as:

L · P = Ax + By + Cz + D = 0 (1)

where L = (A,B,C,D) and P = (x, y, z, 1). The unit nor-
mal vector N of M is (A,B,C, 0).

Given Pr is a point on the reflected light, and P is its
virtual image, then L · Pr is the vertical distance of Pr from

*Bo Ren is the corresponding author.

M, then we have:

P = Pr − 2(L · Pr)N= MrPr (2)

where Mr is denoted by:

Mr =


1− 2A2 −2AB −2AC −2AD

−2AB 1− 2B2 −2BC −2BD

−2AC −2BC 1− 2C2 −2CD

0 0 0 1

 (3)

Obviously, Eqn. (2) is a differentiable function. In our
work, the camera ray is along the negative R and we use
the reflection transformation to trace the incident ray. Fig. 1
(b) shows the 3D view of a auxiliary plane. The auxiliary
plane is built in the camera coordinate system. Given the
Cartesian viewing direction unit vector v = (xv, yv, zv)
and plane position dr, then we have:

Pd = drv = (drxv,dryv,drzv) (4)

Pd is on the auxiliary plane (i.e., Eqn. (1)). Given nr =
(A,B,C), then we have:

D = −(Adrxv +Bdryv +Cdrzv)

= −dr(Axv +Byv +Czv)

= −drnr · v
(5)

Based on the above description, we present our strategy of
acquiring the input points pr of the plane path in Algo-
rithm 1.

B. Linear Summation
We fuse the appearances of two paths by a linear summa-

tion to be the rendered image, which can be supervised by
the captured RGB image. As Tab. 1 shows, different ratios
of the target object appearance have different effects on the
reconstruction quality of the target object. We select 0.3 as
the default ratio in our model according to these results.



Algorithm 1: Transforming sampled points along
a camera ray hs.

Input: The plane normal nr = (A,B,C), the plane
position dr, the camera center o, the depth t,
the view direction v and the sampled points
p along hs.

Output: Spatial points pr of the plane path in the
camera coordinate system.

1 p′ = pt ∪ p′
t = p− o;

2 Pd = drv;
3 D = −drnr · v;
4 pt = {tv|t ∈ [0,dr]};
5 p′

t = {tv|t ∈ [dr, 1]};
6 {D, nr} →Mr;
7 pa = M−1

r p′
t;

8 pr = pt ∪ pa.

Table 1. Effects of different ratios of the target object appearance
on ‘scan24’. The standard deviation is 0.68.

Ratio 0.1 0.3 0.5 0.7 0.9
Chamfer distance ↓ 3.29 2.07 2.43 3.99 3.17

C. Additional Experimental Details
C.1. Hierarchical Sampling

We follow the hierarchical sampling of NeuS [6] to gen-
erate the input spatial points. Specifically, we sample 64
points along a ray uniformly at first, then we perform the
importance sampling for 4 times. The total number of sam-
pled points is 128. We sample extra 32 points outside the
sphere according to NeRF++ [9].

C.2. Neural Network Architecture

The whole network architecture consists of three parts:
SDF predicting, auxiliary plane predicting, and color pre-
dicting. For SDF predicting, we follow the neural network
architecture of NeuS, which is activated by Softplus where
β = 100. Weight normalization is adopted for stable train-
ing. The input is concatenated with the features from the
fourth layer by a skip connection. For auxiliary plane pre-
dicting, the volume density part consists of three linear lay-
ers with ReLU, the position and normal branches both con-
sist of two linear layers. The hidden layers of two branches
are activated by ReLU, while the last layers of two branches
are activated by Sigmoid and Tanh respectively. For color
predicting, the hidden layers are activated by ReLU, and the
last layer is activated by Sigmoid.

C.3. Datasets

Tab. 2 reports the metrics of our synthetic and real-
world datasets. For the synthetic dataset, we set the ker-

nel size of the Gaussian filter to 11 for generating the re-
flection effect. We randomly pick a scene (‘Scan114’) of
the DTU dataset [1] as the source of high specular re-
flections. We select 10 scenes from a total of 15 scenes
on the DTU dataset [1] based on visual reality. They
are: ‘Scan24’, ‘Scan37’, ‘Scan40’, ‘Scan55’, ‘Scan63’,
‘Scan65’, ‘Scan69’, ‘Scan83’, ‘Scan97’, and ‘Scan105’.
For the real-world dataset, we capture one scene (‘Toys’)
and collect 5 scenes from the Internet: ‘Buddha’ 1, ‘Fig-
ure’ 2, ‘Plate’ 3, ‘Porcelain’ 4 and ‘Bronze’ 5. Examples of
real-world scenes in our experiments are shown in Fig. 6.

C.4. Inference Time

For object surface reconstruction, the inference time of
NeuS-HSR is 36 seconds under resolution = 64 and thresh-
old = 0.0. For rendering a novel view at the resolution of
800× 600, NeuS-HSR takes around 96 seconds without the
ground-truth mask on a single NVIDIA Tesla V100 GPU.

C.5. Baselines

Because original neural implicit baselines are trained
and tested on the datasets without HSR, we retrain all
these models on each scene of our synthetic and real-world
datasets.

NeuS [6]. To obtain the results of NeuS, we use their re-
leased official codes 6 with the default setting in all scenes.

UNISURF [4]. To compare with UNISURF, we adopt their
officially released codes 7 with the default setting in the syn-
thetic scenes.

VolSDF [8]. To compare with VolSDF, we use their offi-
cially released codes 8 with the default setting in all scenes.

COLMAP [5]. To obtain the results of COLMAP, we use
the official command version of COLMAP 9 and run se-
quential commands provided in their documents 10 in all
scenes.

C.6. Q&A

Q1. How about the quality of rendered images in novel
views?

A1. The goal of our work is to reconstruct the target ob-
ject against HSR accurately with multi-view images as
supervision. We conduct an evaluation of novel view

1https://www.bilibili.com/video/BV1M44y1z7XX
2https://www.bilibili.com/video/BV1BP4y1Y7bV
3https://www.bilibili.com/video/BV1BP4y1Y7bV
4https://www.bilibili.com/video/BV1UP4y1h7tW
5https://www.bilibili.com/video/BV1SU4y1E7QR
6https://github.com/Totoro97/NeuS
7https://github.com/autonomousvision/unisurf
8https://github.com/lioryariv/volsdf
9https://github.com/colmap/colmap

10https://colmap.github.io/



Table 2. Metrics of datasets used in our experiments.

Scene Synthetic Buddha Toys Figure Plate Porcelain Bronze
Views 49/64 56 23 60 56 60 43

Resolution 1600 × 1200 1920 × 1080 1372 × 1029 1920 × 1080 1920 × 1080 1080 × 1920 1080 × 1920

Table 3. Model parameters of NeuS-HSR and baselines.

Method UNISURF [4] VolSDF [8] NeuS [6] NeuS-HSR
#Params 0.8M 1.4M 1.4M 1.5M

Table 4. Comparison of novel view synthesis on ‘Bronze’.

Method NeRF++ [9] NeuS [6] NeuS-HSR
PSNR↑ 15.92 15.51 15.93
SSIM↑ 0.480 0.489 0.502

synthesis on ‘Bronze’. We select the first 3 images and
the last 7 images of the sequential images for testing.
The average scores of the test sets on PSNR and SSIM
are present in Tab. 4.

Q2. Why use the same appearance function Fc in two
paths?

A2. Firstly, we use the same Fc to save model parameters.
Secondly, because the two paths of our framework are
trained in one stage and the supervision is only the cap-
tured image, we adopt the same Fc to separate the two
appearances in the same domain. Lastly, we consider
Fc as an implicit function that maps 3D locations, nor-
mals, view directions, and neural features to color val-
ues. We use different 3D locations and normals from
two paths as the input to acquire different color values
by Fc.

Q3. Why is the auxiliary plane built in the camera coordi-
nate system?

A3. Our model is trained by a view at each iteration, we
build an auxiliary plane of each view in the camera co-
ordinate system for simplification as Fig. 1 shows. We
transform the 3D locations to the camera coordinate
system first, then we can apply the reflection transfor-
mation by the auxiliary plane directly.

Q4. How about the performance of NeuS-HSR in non-HSR
scenes?

A4. NeuS-HSR is built on two physical assumptions in
HSR scenes. In non-HSR scenes, we can set the ra-
tio of the linear summation to 1.0, then NeuS-HSR de-
grades to NeuS and can achieve the same performance
as NeuS. The qualitative results are shown in Fig. 2

(a) Supervision (b) NeuS (1.0) (c) Ours (0.7) (d) Ours (0.3)

Figure 2. Performance in a non-HSR scene.

D. Additional results on Synthetic Dataset
D.1. Signed Distance Fields

We visualize the signed distance fields in Fig. 3. Our
model extracts a more accurate SDF of the scene than
NeuS according to the distribution of signed distance fields.
Specifically, our signed distance fields present the geomet-
ric characteristics of Bunny’s tangent plane.

D.2. Components

Fig. 7 shows the components of NeuS-HSR on the syn-
thetic dataset. Our method faithfully enhances the target
object appearance and preserves HSR in the auxiliary plane
appearance without any priors. Besides, the plane normal
and position of each auxiliary plane on a camera ray in a
view, indicate that the auxiliary planes tend to be a planar
reflector. Hence, Fig. 7 illustrates that our model achieves
the physical decomposition of HSR scenes.

D.3. Comparisons

More qualitative comparisons between NeuS-HSR and
other state-of-the-art methods on the synthetic dataset are
shown in Fig. 5. All neural implicit approaches are trained
without ground-truth masks. COLMAP [5] generates too
much noise around the target object surface to calculate
the metric (i.e., Chamfer distance) of its results in our
manuscript.

E. Trainable Standard Deviation on the Real-
World Dataset

In NeuS [6], the optimization process reduces the stan-
dard deviation automatically then the surface becomes
sharper. We conduct a comparison between NeuS-HSR
(blue curve) and NeuS (orange curve) on the trainable stan-
dard deviation. The standard deviation of our method con-
verges to a smaller value compared to the standard deviation
of NeuS, and our method achieves clearer and sharper re-
sults on the real-world dataset than NeuS as our manuscript
shows.



F. Future Work
In the future, we plan to extend our approach to han-

dle glasses with different thicknesses. In our daily life, the
thicker the glass, the more obvious the specular reflections.
One possible scheme may be adding thickness to our auxil-
iary plane module. Besides, our method can also evolve to
tackle highly reflective object surfaces (e.g., cars).
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Figure 3. Visualization of signed distance fields.

Buddha Plate Porcelain Bronze

Figure 4. Comparison of trainable standard deviation.
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Figure 5. Qualitative comparisons between NeuS-HSR and baselines on the synthetic dataset.
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Figure 6. Examples of the real-world dataset.
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Figure 7. Components of NeuS-HSR on the synthetic dataset. ‘TOA’: Target object appearance. ‘APA’: Auxiliary plane appearance.


