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1. Supplementary Video
Please check the attached video for dynamic garment re-

construction results of our methods.

2. More Details for the Method
2.1. Explicit Garment and Surface Templates

The adopted garment template covers ten common
clothes categories. It includes the long/short/no sleeve up-
per clothing, and tube dress categories (see Fig. S1 (a)).
Note that the sleeve upper clothing templates are shared for
the dress templates (i.e., long/short/no sleeve dress). Fig-
ure S1 (b) shows the templates that are designed for long
pants, short pants, and skirts. For surface templates, the bot-
tom surface template is the same as the garment template.
For the upper surface template, we include the head and
hand parts in the garment template, as shown in Fig. S1 (c).
Our design of the surface template can improve the recon-
struction results (see Sec. 5.3 of this supplementary material
for examples).

* Equal contribution.
† Corresponding author: hanxiaoguang@cuhk.edu.cn.
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Figure S1. Illustration of the garment templates, surface template,
and the 2D parsing curve diagram. (a) The upper clothing tem-
plates. (b) The bottom clothing templates. (c) The surface tem-
plate with tube dress type. (d) Parsing 2D visible curve from se-
mantic mask and landmarks.

2.2. Parsing Visible Curve from Segmentic Mask

In our work, we need to automatically parse 2D gar-
ment curves. However, there is no existing method for 2D
garment curves estimation from monocular video. We ob-
serve that visible 2D feature curve can be considered as the
boundary of clothing mask. As shown in Fig. S1 (d), the
2D feature curves can be parsed from the shortest path on
clothed boundary according to the predicted garment land-
mark points. Specifically, we train both the HigherHR-
Net [2] and Semantic Network [8] using DeepFashion2
dataset [4] to predict the garment landmarks and the clothed
boundaries.

2.3. Differentiable Surface Rendering

we utilize an MLP fc with learnable parameters ψ to
model the color of surface points in the canonical space.
Given a camera ray v with the camera center c, we first use
differentiable non-rigid ray-casting method [6] to find the
intersection points p on S(η) by solving

p = argmin
p̂

λ|f(p̂)|+ ||(Φ(p̂)− c)× v||
Φ(p̂)− c

. (1)



To make the above equation differentiable, we solve some
normal equations to obtain their differentiable formulation.
Specifically, the surface points p is constrained by both im-
plicit surface function f and the camera ray:

f(p) ≡ 0

(Φ(p)− c)× v ≡ 0
(2)

where Φ is deformation field, c is the camera center and v
is a camera ray.

For learnable weights η of implicit surface f , we differ-
entiate these two equations w.r.t η to obtain:
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In terms of parameters ϕ of deformation field Φ, we have
the following constrain:
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where [v]× denotes as v’s cross product matrix. Then, we
could get differentiable formula ∂p

∂η and ∂p
∂ϕ from the above

4× 3 linear equations.

2.4. Optimizing Sequences with Large Motion

Modeling garment surface deformations in a video se-
quence with large motions is a challenging problem, espe-
cially for dresses and skirts. To better reconstruct dynamic
garment surfaces with large motion, we first reconstruct the
garment surface in the canonical space from a sequence de-
picted self-rotated human, we then freeze the weights of the
implicit surface η, and only optimize the latent code of large
pose frame and deformation field.

2.5. More Details for Loss functions

Normal Regularization Loss. To further refine geometry,
we first employ pix2pixHD to predict clothed human nor-
mal map {N̂t|t = 1, ..., N} [12]. Then, following Jiang et
al. [6], given p in canonical view and its corresponding
points q in camera-view, we obtain np = ∇f(p; η) and its
ground truth by transforming the normal of corresponding
point N̂q to the canonical space, which can be computed by
Jq(p)

T N̂q. Hence, The surface normal loss can be com-
puted by:

Lnorm =
1

|R|
∑
p∈R

λp||np − Jq(p)
T N̂q||2, (5)

where λp is the weight defined by the cosine of angle be-
tween np and corresponding view direction [6].
Rigidity Loss. To avoid distortion of non-rigid transforma-
tion, following Park et al. [11], a rigid loss Larap is com-
puted to constrain the non-rigid deformationDg that should
be as rigid as possible:

Larap =

Ng∑
g=1

1

|Sg|
∑
p∈Sg

ρ(||logΣg
p||F ), (6)

where Σg
p is the singular value matrix of the Jacobian of Dg

on p and ρ is the robust funtion [3].
Eikonal Loss. The Eiknoal loss of IGR [5] is adopted to
regularize the gradient of fg , make this function being sign
distance function:

Leik =

Ng∑
g=1

1

Sg

∑
p∈Sg

(||np||2 − 1)2. (7)

2.6. Garment Extraction from Implicit Surface

Template Deformation. We employNT garment templates
{Ti|i = 1, . . . , NT } as DeepFashion3D [14]. After obtain-
ing the 3D feature curve sets that belong to a garment tem-
plate Ti, The handle-based Laplacian deformation [13] is
utilized to obtain T̄i from Ti so that its feature curves fit
the optimized curves.
Surface Probing in Implicit Function. Given the T̄i that
belongs to the current implicit surface, we first employ
f(p; η) to generate garment surface Ts via marching cube
algorithm [10]. Next, we adopt an adaptive non-rigid ICP to
transfer high-frequency details. Specifically, we only opti-
mize the valid corresponding points whose angle of normal
directions is less than a preset threshold δ (δ is set as 60◦).
The adaptive non-rigid ICP helps to remove erroneous cor-
respondence and produce our final reconstruction T′. Then
we can utilize the deform field Φ to warp T′ to camera view
space based on the pose parameters and the corresponding
per-frame latent code hi.

3. Implementation Details

2D Visible Curve Parsing. For the 2D visible curve pars-
ing network, we train HigherHRNet [2] to predict two gar-
ment landmark on DeepFashion2 dataset [4]. With weights
pretrained on COCO [9], we train the model for 13 epochs,
where we utilize Adam optimizer [7] and set its learning
rate to 0.001. It costs 27 hours to train it on four GTX 3090
GPUs.
Curve and Surface Optimization. We jointly optimize
both the explicit curves and implicit surface for 200 epochs
from scratch. The Adam optimizer [7] is used to optimize
our implicit and explicit parameters. For implicit surface
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Figure S2. Ablation study for the intersection-free curve deforma-
tion. Inter-free is short for intersection-free deformation.

(a) Canonical Space (b) Posed-view Space

Figure S3. Implicit surface reconstruction results of the model
without the curve-aware surface initialization.

optimization, the learning rate is set as 0.0001 with a decay
rate of 0.3 every 50 epochs. The learning rate of the explicit
curve optimization is set as 0.001. It takes about 32 hours
per 300 frame to train our method on one GTX 3090 GPU.
Large Pose Optimization. With respect to capture the se-
quence with large pose, we only optimize latent code and
deformation weights with a learning rate set as 0.0001. It
spends approximate 24 hours fitting a video containing 260
frames on one GTX 3090 GPU.

4. More Details for the Dataset
For the diversity of garment category, we utilize the Peo-

pleSnapshot [1] dataset and seven real sequences collected
by ourselves for qualitative evaluation.

Specifically, the sequence we use in PeopleSnapshot are
female-3-casual, female-3-sport, female-4-casual, female-
6-plaza, male-1-casual, male-2-casual, male-2-outdoor,
male-4-casual, male-5-outdoor, and male-9-plaza.

5. More Results for Ablation Study
5.1. Intersection-free Curve Deformation

Figure S2 shows the ablation study for intersection-free
curve deformation. If directly regressing offsets of points
in the curve, we observe that the curve is prone to self-
intersection and destroy its original order regardless of in-
cluding the edge smooth loss. Note that the computation of
curve-guided implicit consistency loss Lccons requires the
curve points to maintain their order, which further demon-
strates the strengths of our intersection-free curve deforma-

tion method.

(a) Body Temp. vs. Portrait Temp. (b) Garment Mask vs. Portrait Mask

Figure S4. Ablation study for surface templates initialization. (a)
Comparison of results of models initialized with body template
and portrait template. (b) Comparison of results with garment
mask and portrait mask supervision.

5.2. Curve-aware Surface Initialization

Figure S3 illustrates that implicit surface is prone to pro-
duce collapsed surface without curve-aware initialization.
This is because if the distance between initial surface and
target surface is very large, the non-rigid deformation field
has to learn these long-distance offsets. However, it is hard
for MLP to fit long-distance deformation without ground-
truth surface supervision.

5.3. Surface Templates Initialization

We conduct the experiment to explain why we need dif-
ferent surfaces templates for initialization. As Fig. S4 (a)
illustrates, if we only use the whole-body as the surface tem-
plate to initialize garment implicit surface, it hardly learns
the shape of hemlines. Hence, we use three different surface
templates to initialize implicit surface.

Note that we employ the portrait (i.e., including the gar-
ment, head and hand parts) as our upper cloth template in-
stead of upper-cloth garment template. The reason is that
only using garment mask to supervise implicit surface leads
to collapse surface artifacts, as shown in Fig. S4 (b). There-
fore we adopt the portrait template to initialize upper cloth
implicit surface.

Input ReEF Ours Input ReEF Ours

Figure S5. Comparison between ReEF [15] and our method on
two frames in a video sequence.



Figure S6. More dynamic reconstruction results on our method. Each row shows the reconstruction of four frames in a monocular video.

Input BCNet ClothWild ReEF Ours

Figure S7. Reconstruction results on a large pose sequence. Each row shows the key frame of the video and results of different methods.

5.4. Temporal Consistency

As our method represents the garment in the canon-
ical space and model motion with a deformation field,
it can reconstruct temporally consistent results, which is
demonstrated in Fig. S5, where the single-image method
ReEF [15] fails to produce consistent reconstruction on 2
input frames in a video sequence.

6. More Qualitative Results

6.1. More Results for Dynamic Reconstruction

Figure S6 demonstrates more dynamic reconstruction re-
sults on our method. Figure S7 shows the reconstruction
results on a sequence with large motion. We can see that
our method produces high-fidelity and temporally consis-
tent dynamic garment reconstruction. More results can be
seen in the attached video.

6.2. More Comparisons with Existing Methods

We show more visual comparisons between existing ap-
proaches and our method on PeopleSnapshot dataset [1] and
our videos captured by smartphone in Fig. S8 and Fig. S9,
respectively. Compared to state-of-the-art methods, our ap-
proach produces more realistic and delicate clothing sur-
face, clearly demonstrating the effectiveness of our method.

More dynamic reconstruction compari-
son results can be found in our project
page: https://lingtengqiu.github.io/2023/REC-MV/.
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