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BM BM+US BM+UW BM+OS

UTK-Face UA 79.7±0.4 79.2±1.0 79.9±0.2 79.3±0.2
Age BC 79.1±2.3 77.6±0.9 77.5±1.7 78.7±1.6

UTK-Face UA 90.8±0.2 90.9±0.5 91.1±0.2 90.7±0.4
Race BC 90.7±0.5 91.1±0.3 91.6±0.1 90.9±0.5

CelebA UA 90.8±0.4 91.1±0.2 91.1±0.4 91.1±0.1
Blonde BC 87.1±0.6 87.9±0.3 87.9±0.7 87.7±0.4

CIFAR-S UA 91.6±0.1 91.7±0.1 91.8±0.0 91.6±0.2
BC 91.1±0.1 91.2±0.2 91.4±0.2 91.2±0.2

Table 1. Sampling for multi-class prediction head compare the
effects of using different sampling methods to train the multi-class
prediction in our proposed method: Bias Mimicking. We under-
line results where sampling methods make significant improve-
ments. Refer to Section A for discussion.

A. Sampling methods Impact on Multi-Class
Classification Head

Bias Mimicking produces a binary version dc of the
dataset D for each class c. Each dc preserves class c sam-
ples while undersampling each c′ such that the bias within c′

mimics that of c. A debiased feature representation is then
learned by training a binary classifier for each dc. When the
training is done, using the scores from each binary predictor
for inference is challenging. This is because each predictor
is trained on a different distribution of the data, so the pre-
dictors are uncalibrated with respect to each other. There-
fore, to perform inference, we train a multi-class prediction
head using the learned feature representations and the origi-
nal dataset distribution. Moreover, we prevent the gradients
from flowing into the feature space since the original distri-
bution is biased. Note that we rely on the assumption that
the correlation between the target labels and bias labels are
minimized in the feature space, and thus the linear layer is
unlikely to relearn the bias. During our experiments out-
lined in Section 4, we note that this approach was sufficient

to obtain competitive results. This section explores whether
we can improve performance by using sampling methods to
train the linear layer. To that end, observe results in Table 1.
We underline the rows where the sampling methods make
improvements. We note that the sampling methods did not
improve performance for three of the four benchmarks in
our experiments. However, on CelebA, we note that the
sampling methods marginally improved performance. We
suspect this is because a small amount of the bias might
be relearned when training the multi-class prediction head
since the input distribution remains biased.

B. Heavy Makeup Benchmark

Prior work [3] uses the Heavy Makeup binary attribute
prediction task from CelebA [6] as a benchmark for bias
mitigation, where Gender is the sensitive attribute. In this
experiment, Heavy Makeup’s attribute is biased toward the
sensitive group: Female. We note that the notion of ”Heavy
Makeup” is quite subjective. The attribute labels may vary
significantly according to cultural elements, lighting condi-
tions, and camera pose considerations. Thus, we expect a
fair amount of label noise, i.e., inconsistency with label as-
signment. We document this problem in a Quantitative and
Qualitative analysis below.

Quantitative Analysis: We randomly select a total of
200 pairs of positive and negative images. We ensure
the samples are balanced among the four possible pair-
ings, i.e., (Heavy Makeup-Male, Non Heavy Makeup-
Female), (Heavy Makeup-Female, Non Heavy Makeup-
Male), (Heavy Makeup-Male, Non Heavy Makeup-Male),
(Heavy Makeup-Female, Non Heavy Makeup-Female). We
asked three independent annotators to label which image in
the pair is wearing ”Heavy Makeup”. Then, we calculate
the percentage of disagreement between the three annota-
tors and the ground truth labels in the dataset. We note that
32.3% ± 0.02 of the time, the annotators on average dis-
agreed with the ground truth. The noise is further ampli-
fied when the test set used in [3] is examined. In particu-
lar, Male-Heavy Make up (an under-represented subgroup)
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Figure 1. Randomly sampled images from the four subgroups: Female-Heavy Makeup, Female-Non-Heavy Makeup, Male-Heavy Makeup,
and Male-Non-Heavy Makeup in CelebA dataset [6]. Note the that there is not a clearly differentiating signal for the attribute Heavy
Makeup. Refer to Section B for discussion.

Nonsampling Methods Sampling Methods

Vanilla Adv [2] G-DRO [7] DI [9] BC+BB [3] OS [9] UW [1] US [4] BM BM + OS

CelebA
Smiling

UA 90.9±0.1 90.7±0.2 93.2±0.1 92.0±0.1 92.4±0.1 92.4±0.3 92.8±0.0 92.6±0.1 92.7±0.1 92.7±0.1
BC 84.3±0.2 84.7±0.4 92.2±0.1 91.3±0.2 92.6±0.1 91.5±0.2 92.4±0.2 92.1±0.2 92.3±0.2 92.2±0.1

CelebA
Black Hair

UA 86.3±0.7 87.1±0.3 88.5±0.2 86.7±0.7 87.7±0.1 87.6±0.3 88.5±0.1 88.4±0.2 87.6±0.7 88.5±0.1
BC 82.7±0.6 83.4±0.5 88.3±0.4 86.6±1.2 86.6±0.3 85.6±0.6 88.0±0.2 87.3±0.1 87.8±1.3 88.5±0.7

Average
UA 88.6±0.4 88.9±0.2 90.8±0.1 89.3±0.4 90.0±0.1 90.0±0.3 90.6±0.1 90.5±0.1 90.2±0.4 90.6±0.1
BC 83.5±0.4 84.0±0.4 90.2±0.2 88.9±0.7 89.6±0.2 88.5±0.4 90.2±0.2 89.7±0.1 90.0±0.7 90.3±0.4

Table 2. Expanded benchmarks from the CelebA dataset [6]. Refer to Section C for discussion.

only contains 9 testing samples. We could not visually de-
termine whether 4 out of these 9 images fall under Heavy
Makeup. Out of the 5 remaining images, 3 are of the same
person from different angles. Thus, given the noise in the
training set, the small size of the under-represented group
in the test set, and its label noise, we conclude that results
from this benchmark will not be reliable and exclude it from
our experiments.

Qualitative Analysis: We sample random 5 images from
the following subgroups: Female-Heavy Makeup, Female-
Non-Heavy Makeup, Male-Heavy Makeup, and Male-Non-
Heavy Makeup (Fig 1). It is clear from the Figure that there
is no firm agreement about the definition of Heavy Makeup.

C. Additional Benchmarks
In Section B, we note that the CelebA attribute Heavy-

Makeup usually used in assessing model bias in prior work
[3,8] is a noisy attribute, i.e., labels are inconsistent. There-
fore, we choose not to use it in our experiments. Alter-
natively, we provide results on additional attributes where
labels are more likely to be consistent. To that end, we
choose to classify the attributes: Smiling and Black Hair,

where Gender is the bias variable. The original distribu-
tion of each attribute is not sufficiently biased with respect
to Gender to note any significant change in performance.
Thus, we subsample each distribution to ensure that each
attribute is biased toward Gender. We provide the splits for
the resulting distributions in the attached code base. Refer
for Table 2 for results.

Note that our method Bias Mimicking performance
marginally lags behind other methods when predicting
”Black Hair” attribute. However, when the multi-class pre-
diction layer is trained with an oversampled distribution
(BM + OS), then the gap is bridged. This is consistent with
the observation in Table 1 where oversampling marginally
improves our method performance on CelebA. These obser-
vations indicate that on some benchmarks, a small amount
of the bias might be relearned through the multi-class pre-
diction head. To ensure that this bias is mitigated, it is suffi-
cient to oversample the input distribution. Moreover, since
oversampling the input distribution does not change perfor-
mance on other datasets as indicated in Table 1, we recom-
mend that the input distribution for the multi-class predic-
tion head is oversampled to ensure the best performance.

Overall, (BM + OS) performs comparably to sampling



Learning
Rate

Weight
Reg

Group
Adjustment

UTK-Face Age 0.001 0.01 4
UTK-Face Race 0.001 0.001 4

CelebA Blonde 0.001 0.1 3
CelebA Smiling 0.0001 0.01 2
CelebA Black Hair 0.0001 0.01 3

CIFAR-S 0.01 0.01 5

Table 3. Hyperparameters used for GroupDRO [7]. Refer to Sec-
tion D for further discussion.

US [4] OS [9] Other Methods

UTK-Face Age 400 7 20
UTK-Face Race 120 10 20

CelebA Blonde 170 4 10
CelebA Black Hair 40 5 10
CelebA Smiling 30 5 10

CIFAR-S 2000 100 200

Table 4. Number of Epochs used to train each method. Refer to
Section D for further discussion.

and nonsampling methods. This is consistent with our re-
sults on CelebA dataset in Section 4 of the main paper
where we predict ”Blonde Hair”. More concretely, Un-
dersampling performs comparably and sometimes better
than nonsampling methods. This is reaffirming that pre-
dicting attributes on CelebA is relatively an easy task that
dropping samples to balance subgroup distribution is suf-
ficient to mitigate bias. However, as discussed in Sec-
tion 4 of the main paper, vanilla sampling methods (Un-
dersampling, Upweighting, Oversampling) perform poorly
on some datasets. For example, as we note in Table 1
in the main paper, Undersampling performs considerably
worse than nonsampling methods on the Utk-Face dataset
as well the CIFAR-S dataset. Moreover, Upweighting per-
forms substantially worse on CIFAR-S. Finally, Oversam-
pling performs consistently worse on every benchmark.
However, only our method, Bias Mimicking, manages to
maintain competitive performance with respect to nonsam-
pling methods on all datasets.

D. Model and Hyper-parameters Details

We test bias Mimicking on six benchmarks. Three Bi-
nary Classification tasks on CelebA [6], namely, Blonde,
Black Hair, and Smiling, Two Binary Classification tasks
on UTK-Face [10], namely Race and Age and one multi-
class task CIFAR-S. We provide further info below.

100% 75% 50% 25%
UTK-Face Age 79.7 78.9 78.0 76.7
UTK-Face Race 90.8 90.6 89.9 88.3
CelebA Blonde 90.8 90.3 90.1 89.9

Table 5. Comparing the performance of our method’s Unbiased
Accuracy (UA) where we use x% of the linear program solution.
Refer to E for discussion.

Optimization Following [3], we use ADAM [5] optimizer
with learning rate 0.0001 on CelebA and UTK-Face. For
CIFAR-S, following [9], we use SGD with learning rate
0.1. GroupDRO [7], however, has not been tuned before on
the benchmarks in our study. Even for CelebA Blonde, the
method was not tuned on the more challenging split in this
study. Therefore, we grid search the learning rate/weight
regularization/group adjustment and choose the best over
the validation set. Refer to Table 3 for our final choices.
With respect to BC+BB, the method was not benchmarked
on CIFAR-S. Therefore, we run a grid search over the
method’s hyperparameters and choose α = 1.0, γ = 10.
Finally, as discussed in Section 4, UW struggles to opti-
mize over CIFAR-S with learning rate 0.1. Therefore, we
tune the learning rate and we find that 0.0001 to work the
best over the validation set.
Total Number of Epochs As noted in Section 4.1 in the
paper, a model trained with Undersampling sees fewer it-
erations than baselines per epoch and a model trained with
Oversampling sees more iterations per epoch. Therefore,
we adjust the number of epochs for both methods such that
the total number of iterations seen by the model is the same
across all methods tested in our experiments. Refer to Ta-
ble 4 for a breakdown of the total number of epochs used to
train each method.
Augmentations: For all benchmarks, we augment the in-
put images with a horizental flip. BC+BB [3] uses extra
augmentation functions. Refer to [3] for further details.
Splits: Note on CelebA, unlike [3], we use CelebA vali-
dation set for validation and test set for testing rather than
using the validation set for testing and a split of the training
set for validation.

E. Effect of the Linear Program Constraint
As discussed in Section 3 in the paper, We use a linear

program to determine how the training distribution is sub-
sampled to mimick the bias. The program is constrained
such that the resulting distributions preserve the most num-
ber of samples because fewer retained samples may com-
promise the model performance. To verify this the impor-
tance of this step, we train our model using distributions
that maintain x% of the Linear Program solution where
x < 100. Note the results in Table 5. Note how the perfor-
mance drops emphasizing the importance of this constraint.
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