A Characteristic Function-based Method for Bottom-up Human Pose Estimation
(Supplementary Material)

Haoxuan Qu\(^1\), Yujun Cai\(^2\), Lin Geng Foo\(^1\), Ajay Kumar\(^3\), Jun Liu\(^1,\ast\)

\(^1\)Singapore University of Technology and Design, Singapore
\(^2\)Nanyang Technological University, Singapore
\(^3\)The Hong Kong Polytechnic University, Hong Kong

haoxuan.qu@mymail.sutd.edu.sg, yujun001@e.ntu.edu.sg, lingeng.foo@mymail.sutd.edu.sg
ajay.kumar@polyu.edu.hk, jun.liu@sutd.edu.sg

1. Additional Qualitative Results

In Fig. 1, we compare our method with the baseline method (HrHRNet-W32) \([2]\), and present qualitative results on the COCO validation set. Note that for the baseline method (HrHRNet-W32) \([2]\), we train the backbone model with the overall L2 loss, and for our method, we train the model with the loss \(\hat{L}_{total}\) in Eq. 22 in the main paper. As shown, the baseline method can miss or misidentify body joints in some sub-regions of the predicted heatmap, whereas our method enables body joints in different sub-regions of the predicted heatmap to be located more accurately, which demonstrates the effectiveness of our method.

2. Additional Implementation Details about Loss

Recall that in the main paper, we construct \(\hat{L}_k\) as:

\[
\hat{L}_k = \sum_{m=1}^{M} \frac{\gamma}{2U} \left(\varphi^k_{D(H_p)}(t_m) - \varphi^k_{D(H_g)}(t_m) \right)^2
\]

where \(\{t_1, \ldots, t_M\}\) denotes a set of \(M\) vectors randomly sampled from \(B_U\). In this section, we introduce how we calculate \(\hat{L}_k\) in more detail. Specifically, recall that \(\varphi_D(t) = E_{x \sim D}[e^{i(t \cdot x)}]\) and \(e^{i(t \cdot x)} = \cos((t, x)) + i \sin((t, x))\). Then we can rewrite \(\hat{L}_k\) as:

\[
\hat{L}_k = \sum_{m=1}^{M} \frac{\gamma}{2U} \left(\varphi^k_{D(H_p)}(t_m) - \varphi^k_{D(H_g)}(t_m) \right)^2
\]

\[
= \frac{\gamma^2}{4U^2} \sum_{m=1}^{M} \left(\varphi^k_{D(H_p)}(t_m) - \varphi^k_{D(H_g)}(t_m) \right)^2
\]

\[
= \frac{\gamma^2}{4U^2} \sum_{m=1}^{M} \left(E_{x \sim D(H_p)}[\cos((t_m, x))] + iE_{x \sim D(H_p)}[\sin((t_m, x))] - E_{x \sim D(H_g)}[\cos((t_m, x))] - iE_{x \sim D(H_g)}[\sin((t_m, x))] \right)^2
\]

\[
= \frac{\gamma^2}{4U^2} \sum_{m=1}^{M} \left((E_{x \sim D(H_p)}[\cos((t_m, x))] - E_{x \sim D(H_g)}[\cos((t_m, x))])^2 + (E_{x \sim D(H_p)}[\sin((t_m, x))] - E_{x \sim D(H_g)}[\sin((t_m, x))]\right)^2
\]

From Eq. 2, we can then calculate \(\hat{L}_k\) simply through \(\sin\) and \(\cos\) operations.

3. Proof of Lemma 1 in the Main Paper

In this section, we discuss Lemma 1 in the main paper.

*Corresponding Author
Lemma 1. Let φ_D be the characteristic function of a 2-dimensional distribution D. Let $R^e = [x_{lower}^1, x_{upper}^1] \times [x_{lower}^2, x_{upper}^2]$ a rectangular region, $Re = \{x_{lower}^1, x_{upper}^1\} \times [x_{lower}^2, x_{upper}^2] \cup \{x_{lower}^1, x_{upper}^1\} \times \{x_{lower}^2, x_{upper}^2\}$ the edges of this region, and $R^v = \{x_{lower}^1, x_{upper}^1\} \times \{x_{lower}^2, x_{upper}^2\}$ the vertices of this region. Let $B_T = [-T, T] \times [-T, T]$. Denote $[D]_R$ the portion of the distribution D in R. $[D]_{R^e}$ can then be written as:

$$
[D]_{R^e} = \lim_{T \to \infty} \frac{1}{(2\pi)^2} \int_{B_T} \prod_{n=1}^2 \left(\frac{e^{-it_n x_{lower}^n} - e^{-it_n x_{upper}^n}}{it_n} \right) \varphi_D(t) \, dt_1 \, dt_2 + \epsilon([D]_{R^e})
$$

(3)
where \(\epsilon([D]_{R'}) = \frac{|D|_{R'} - |D|_{R}}{2} + \frac{|D|_{R'}}{4} \) and \(dt_1 dt_2 \) are calculated based on the Lebesgue measure.

Proof. The proof sketch of Lemma 1 in the main paper is similar to the proof of Theorem 3.3.11 in [3]. Specifically, following the similar process of [3], we can first rewrite the right hand side of Eq. 3 as:

\[
\lim_{T \to \infty} \frac{1}{(2\pi)^2} \int_{B_T} \prod_{n=1}^{2} \left(e^{-it_{n}x_{n}^{lower}} - e^{-it_{n}x_{n}^{upper}} \right) \varphi_D(t) \, dt_1 \, dt_2 + \epsilon([D]_{R'})
\]

\[
= \lim_{T \to \infty} \frac{1}{(2\pi)^2} \int_{\mathbb{R}^2} \left(\left(\int_{-T}^{T} \frac{\sin(t_1(x_1 - x_1^{lower}))}{t_1} \, dt_1 - \int_{-T}^{T} \frac{\sin(t_1(x_1 - x_1^{upper}))}{t_1} \, dt_1 \right) \right.
\]

\[
\times \left. \left(\int_{-T}^{T} \frac{\sin(t_2(x_2 - x_2^{lower}))}{t_2} \, dt_2 - \int_{-T}^{T} \frac{\sin(t_2(x_2 - x_2^{upper}))}{t_2} \, dt_2 \right) \right) \, dD + \epsilon([D]_{R'})
\]

Then following [3], we have the two equations below:

\[
\lim_{T \to \infty} \left(\int_{-T}^{T} \frac{\sin(t_1(x_1 - x_1^{lower}))}{t_1} \, dt_1 - \int_{-T}^{T} \frac{\sin(t_1(x_1 - x_1^{upper}))}{t_1} \, dt_1 \right) = \begin{cases}
2\pi, & x_1^{lower} < x_1 < x_1^{upper} \\
\pi, & x_1 = x_1^{lower} \ or \ x_1 = x_1^{upper} \\
0, & x_1 < x_1^{lower} \ or \ x_1 > x_1^{upper}
\end{cases}
\]

\[
\lim_{T \to \infty} \left(\int_{-T}^{T} \frac{\sin(t_2(x_2 - x_2^{lower}))}{t_2} \, dt_2 - \int_{-T}^{T} \frac{\sin(t_2(x_2 - x_2^{upper}))}{t_2} \, dt_2 \right) = \begin{cases}
2\pi, & x_2^{lower} < x_2 < x_2^{upper} \\
\pi, & x_2 = x_2^{lower} \ or \ x_2 = x_2^{upper} \\
0, & x_2 < x_2^{lower} \ or \ x_2 > x_2^{upper}
\end{cases}
\]

Then using Eq. 5 and Eq. 6, we have:

\[
\lim_{T \to \infty} \left(\left(\int_{-T}^{T} \frac{\sin(t_1(x_1 - x_1^{lower}))}{t_1} \, dt_1 - \int_{-T}^{T} \frac{\sin(t_1(x_1 - x_1^{upper}))}{t_1} \, dt_1 \right) \right.
\]

\[
\times \left. \left(\int_{-T}^{T} \frac{\sin(t_2(x_2 - x_2^{lower}))}{t_2} \, dt_2 - \int_{-T}^{T} \frac{\sin(t_2(x_2 - x_2^{upper}))}{t_2} \, dt_2 \right) \right)
\]

\[
= \begin{cases}
(2\pi)^2, & \{x_1^{lower}, x_1^{upper}\} \times \{x_2^{lower}, x_2^{upper}\} \times \{x_1^{lower}, x_1^{upper}\} \times \{x_2^{lower}, x_2^{upper}\} \\
(2\pi) \times \pi, & \{x_1^{lower}, x_1^{upper}\} \times \{x_2^{lower}, x_2^{upper}\} \cup \{x_1^{lower}, x_1^{upper}\} \times \{x_2^{lower}, x_2^{upper}\} \\
\pi \times \pi, & \{x_1^{lower}, x_1^{upper}\} \times \{x_2^{lower}, x_2^{upper}\} \\
0, & \text{else}
\end{cases}
\]

Then using Eq. 7, we can further rewrite Eq. 4 as:

\[
\lim_{T \to \infty} \frac{1}{(2\pi)^2} \int_{B_T} \prod_{n=1}^{2} \left(e^{-it_{n}x_{n}^{lower}} - e^{-it_{n}x_{n}^{upper}} \right) \varphi_D(t) \, dt_1 \, dt_2 + \epsilon([D]_{R'})
\]

\[
= \lim_{T \to \infty} \frac{1}{(2\pi)^2} \int_{\mathbb{R}^2} \left(\left(\int_{-T}^{T} \frac{\sin(t_1(x_1 - x_1^{lower}))}{t_1} \, dt_1 - \int_{-T}^{T} \frac{\sin(t_1(x_1 - x_1^{upper}))}{t_1} \, dt_1 \right) \right.
\]

\[
\times \left. \left(\int_{-T}^{T} \frac{\sin(t_2(x_2 - x_2^{lower}))}{t_2} \, dt_2 - \int_{-T}^{T} \frac{\sin(t_2(x_2 - x_2^{upper}))}{t_2} \, dt_2 \right) \right) \, dD + \epsilon([D]_{R'})
\]

\[
= (|D|_{R'} - |D|_{R'}) + \frac{|D|_{R'} - |D|_{R'}}{2} + \frac{|D|_{R'} - |D|_{R'}}{4} + \epsilon([D]_{R'})
\]

\[
= |D|_{R'} - \frac{|D|_{R'}}{2} - \frac{|D|_{R'}}{4} + \epsilon([D]_{R'})
\]

\[
= |D|_{R'}
\]

\[
\square
\]

4. Additional Details about Eq. 15 in the Main Paper

In this section, we discuss why Eq. 15 in the main paper holds. Specifically, as shown in [1], a mixture of Gaussian distributions with diagonal covariance matrices is a universal approximator of smooth distributions; some previous human pose estimation works [8, 9] also use a mixture of Gaussian distributions that effectively represents the predicted heatmaps. Therefore, we here rewrite \(D(H_p) \) as a mixture of Gaussian distributions with diagonal covariance matrices. Besides, as \(H_g \)
is constructed via putting 2D Gaussian blobs centered at the GT coordinates of the body joints, we can also rewrite $D(H_g)$ as a mixture of Gaussian distributions with diagonal covariance matrices. After rewriting both $D(H_p)$ and $D(H_g)$ as a mixture of Gaussian distributions with diagonal covariance matrices, following [6], denoting $t = (t_1, t_2)$, we can write $\varphi_{D(H_p)}^k(t)$ and $\varphi_{D(H_g)}^k(t)$ respectively as Eq. 9 and Eq. 10 below:

\[
\varphi_{D(H_p)}^k(t) = \sum_{b=1}^{B} w_b e^{i(I_{b_k} - \frac{1}{2}I)^T \Sigma_I t} = \sum_{b=1}^{B} w_b e^{i(\mu_b + t_1 + \mu_b + t_2) - \frac{1}{2}((t_1)^2(\sigma_{b_1})^2 + (t_2)^2(\sigma_{b_2})^2)}
\]

where $\sum_{b=1}^{B} w_b = 1$, $w_b > 0$, $\mu_b = (\mu_{b_1}, \mu_{b_2})$ is the mean of the b-th Gaussian distribution component of $D(H_p)$, and $\Sigma_b = \begin{pmatrix} (\sigma_{b_1})^2 & 0 \\ 0 & (\sigma_{b_2})^2 \end{pmatrix}$ is the variance of the b-th Gaussian distribution component of $D(H_p)$.

\[
\varphi_{D(H_g)}^k(t) = \sum_{c=1}^{C} w_c e^{i(I_{c_k} - \frac{1}{2}I)^T \Sigma_I t} = \sum_{c=1}^{C} w_c e^{i(\mu_c + t_1 + \mu_c + t_2) - \frac{1}{2}((t_1)^2(\sigma_{c_1})^2 + (t_2)^2(\sigma_{c_2})^2)}
\]

where $\sum_{c=1}^{C} w_c = 1$, $w_c > 0$, $\mu_c = (\mu_{c_1}, \mu_{c_2})$ is the mean of the c-th Gaussian distribution component of $D(H_g)$, and $\Sigma_c = \begin{pmatrix} (\sigma_{c_1})^2 & 0 \\ 0 & (\sigma_{c_2})^2 \end{pmatrix}$ is the variance of the c-th Gaussian distribution component of $D(H_g)$.

After that, further denoting $x = (x_1, x_2)$, we have:

\[
\frac{\varphi_{D(H_p)}^k(t) - \varphi_{D(H_g)}^k(t)}{(2\pi)^2} e^{-i(tx)} = \frac{e^{-i(tx)}}{(2\pi)^2} \left(\sum_{b=1}^{B} w_b e^{i(\mu_b + t_1 + \mu_b + t_2) - \frac{1}{2}((t_1)^2(\sigma_{b_1})^2 + (t_2)^2(\sigma_{b_2})^2)} - \sum_{c=1}^{C} w_c e^{i(\mu_c + t_1 + \mu_c + t_2) - \frac{1}{2}((t_1)^2(\sigma_{c_1})^2 + (t_2)^2(\sigma_{c_2})^2)} \right)
\]

\[
= \frac{1}{(2\pi)^2} \left(\sum_{b=1}^{B} w_b e^{-\frac{i}{2}((t_1)^2(\sigma_{b_1})^2 + (t_2)^2(\sigma_{b_2})^2)} \left(\cos((\mu_{b_1} - x_1) t_1 + (\mu_{b_2} - x_2) t_2) + i \sin((\mu_{b_1} - x_1) t_1 + (\mu_{b_2} - x_2) t_2) \right) - \sum_{c=1}^{C} w_c e^{-\frac{i}{2}((t_1)^2(\sigma_{c_1})^2 + (t_2)^2(\sigma_{c_2})^2)} \left(\cos((\mu_{c_1} - x_1) t_1 + (\mu_{c_2} - x_2) t_2) - i \sin((\mu_{c_1} - x_1) t_1 + (\mu_{c_2} - x_2) t_2) \right) \right)
\]

\[
= \Re \left(\frac{\varphi_{D(H_p)}^k(t) - \varphi_{D(H_g)}^k(t)}{(2\pi)^2} e^{-i(tx)} \right) + i \times \Im \left(\frac{\varphi_{D(H_p)}^k(t) - \varphi_{D(H_g)}^k(t)}{(2\pi)^2} e^{-i(tx)} \right)
\]
where:

\[
Re\left(\frac{\varphi^k_{D(H_p)}}{(2\pi)^2} e^{-i(t,x)}\right) = \frac{1}{(2\pi)^2} \left(\sum_{b=1}^{B} w_b e^{-\frac{i}{2}((t_1)^2(\sigma_{b,1})^2 + (t_2)^2(\sigma_{b,2})^2)} \cos((\mu_{b,1} - \sigma_{b})_1) + (\mu_{b,2} - \sigma_{b})_2) \right. \\
- \left. \sum_{c=1}^{C} w_c e^{-\frac{i}{2}((t_1)^2(\sigma_{c,1})^2 + (t_2)^2(\sigma_{c,2})^2)} \cos((\mu_{c,1} - \sigma_{c})_1 + (\mu_{c,2} - \sigma_{c})_2) \right)
\]

\[
Im\left(\frac{\varphi^k_{D(H_p)}}{(2\pi)^2} e^{-i(t,x)}\right) = \frac{1}{(2\pi)^2} \left(\sum_{b=1}^{B} w_b e^{-\frac{i}{2}((t_1)^2(\sigma_{b,1})^2 + (t_2)^2(\sigma_{b,2})^2)} \sin((\mu_{b,1} - \sigma_{b})_1) + (\mu_{b,2} - \sigma_{b})_2) \right. \\
- \left. \sum_{c=1}^{C} w_c e^{-\frac{i}{2}((t_1)^2(\sigma_{c,1})^2 + (t_2)^2(\sigma_{c,2})^2)} \sin((\mu_{c,1} - \sigma_{c})_1 + (\mu_{c,2} - \sigma_{c})_2) \right)
\]

Then denoting \(\sigma = \min_{b \in B}(\sigma_{b,1}, \min_{c \in C}(\sigma_{c,1})\), we can find the upper and the lower bound of

\[
Re\left(\frac{\varphi^k_{D(H_p)}}{(2\pi)^2} e^{-i(t,x)}\right) \quad \text{and} \quad Im\left(\frac{\varphi^k_{D(H_p)}}{(2\pi)^2} e^{-i(t,x)}\right)
\]
respectively as:

\[
Re\left(\frac{\varphi^k_{D(H_p)}}{(2\pi)^2} e^{-i(t,x)}\right) = \frac{1}{(2\pi)^2} \left(\sum_{b=1}^{B} w_b e^{-\frac{i}{2}((t_1)^2(\sigma_{b,1})^2 + (t_2)^2(\sigma_{b,2})^2)} \cos((\mu_{b,1} - \sigma_{b})_1 + (\mu_{b,2} - \sigma_{b})_2) \right. \\
- \left. \sum_{c=1}^{C} w_c e^{-\frac{i}{2}((t_1)^2(\sigma_{c,1})^2 + (t_2)^2(\sigma_{c,2})^2)} \cos((\mu_{c,1} - \sigma_{c})_1 + (\mu_{c,2} - \sigma_{c})_2) \right) \\
\leq \frac{e^{-\frac{i}{2}((t_1)^2(\sigma_{b,1})^2 + (t_2)^2(\sigma_{b,2})^2)}}{(2\pi)^2} \left(\sum_{b=1}^{B} w_b - \sum_{c=1}^{C} (-w_c) \right) \\
= \frac{e^{-\frac{i}{2}((t_1)^2(\sigma_{b,1})^2 + (t_2)^2(\sigma_{b,2})^2)}}{2\pi^2}
\]

\[
Re\left(\frac{\varphi^k_{D(H_p)}}{(2\pi)^2} e^{-i(t,x)}\right) = \frac{1}{(2\pi)^2} \left(\sum_{b=1}^{B} w_b e^{-\frac{i}{2}((t_1)^2(\sigma_{b,1})^2 + (t_2)^2(\sigma_{b,2})^2)} \cos((\mu_{b,1} - \sigma_{b})_1 + (\mu_{b,2} - \sigma_{b})_2) \right. \\
- \left. \sum_{c=1}^{C} w_c e^{-\frac{i}{2}((t_1)^2(\sigma_{c,1})^2 + (t_2)^2(\sigma_{c,2})^2)} \cos((\mu_{c,1} - \sigma_{c})_1 + (\mu_{c,2} - \sigma_{c})_2) \right) \\
\geq \frac{e^{-\frac{i}{2}((t_1)^2(\sigma_{b,1})^2 + (t_2)^2(\sigma_{b,2})^2)}}{(2\pi)^2} \left(\sum_{b=1}^{B} (w_b) - \sum_{c=1}^{C} w_c \right) \\
= \frac{e^{-\frac{i}{2}((t_1)^2(\sigma_{b,1})^2 + (t_2)^2(\sigma_{b,2})^2)}}{2\pi^2}
\]
\[Im \left(\frac{\varphi^k_{D(H_x)}(t) - \varphi^k_{D(H_y)}(t)}{(2\pi)^2} e^{-i(t,x)} \right) \]

\[= \frac{1}{(2\pi)^2} \left(\sum_{b=1}^{B} w_b e^{-\frac{1}{2}((t_1)^2(\sigma_{b,1})^2 + (t_2)^2(\sigma_{b,2})^2)} \sin((\mu_{b,1} - x_1)t_1 + (\mu_{b,2} - x_2)t_2) \right. \]

\[- \sum_{c=1}^{C} w_c e^{-\frac{1}{2}((t_1)^2(\sigma_{c,1})^2 + (t_2)^2(\sigma_{c,2})^2)} \sin((\mu_{c,1} - x_1)t_1 + (\mu_{c,2} - x_2)t_2)) \]

\[\leq e^{-\frac{1}{2}((t_1)^2\sigma^2 + (t_2)^2\sigma^2)} \left(\sum_{b=1}^{B} w_b - \sum_{c=1}^{C} (-w_c) \right) \]

\[= \frac{e^{-\frac{1}{2}((t_1)^2\sigma^2 + (t_2)^2\sigma^2)}}{2\pi^2} \]

Then with Eq. 14 in the main paper rewritten as:

\[|| \lim_{T \to \infty} \int_{B_T} \int_{R_{sub}} \frac{\varphi^k_{D(H_x)}(t) - \varphi^k_{D(H_y)}(t)}{(2\pi)^2} e^{-i(t,x)} \, dx \, dt ||_2^2 \]

\[= || \int_{B_T} \int_{R_{sub}} \frac{\varphi^k_{D(H_x)}(t) - \varphi^k_{D(H_y)}(t)}{(2\pi)^2} e^{-i(t,x)} \, dx \, dt + \lim_{T \to \infty} \int_{B_T \setminus B_U} \int_{R_{sub}} \frac{\varphi^k_{D(H_x)}(t) - \varphi^k_{D(H_y)}(t)}{(2\pi)^2} e^{-i(t,x)} \, dx \, dt ||_2^2 \]

we can rewrite the upper bound and the lower bound of the real part and the imaginary part of the latter term.
\[
\lim_{T \to \infty} \int_{B_T \setminus B_U} \int_{R_{\text{sub}}^k} \frac{\varphi_{D(H_p)}^k(t) - \varphi_{D(H_q)}^k(t)}{(2\pi)^2} e^{-i(t,x)} \, dx \, dt
\]
as:
\[
Re\left(\lim_{T \to \infty} \int_{B_T \setminus B_U} \int_{R_{\text{sub}}^k} \frac{\varphi_{D(H_p)}^k(t) - \varphi_{D(H_q)}^k(t)}{(2\pi)^2} e^{-i(t,x)} \, dx \, dt \right)
= \lim_{T \to \infty} \int_{B_T \setminus B_U} \int_{R_{\text{sub}}^k} Re\left(\frac{\varphi_{D(H_p)}^k(t) - \varphi_{D(H_q)}^k(t)}{(2\pi)^2} e^{-i(t,x)} \right) \, dx \, dt
\leq \lim_{T \to \infty} \int_{B_T \setminus B_U} \int_{R_{\text{sub}}^k} -\frac{1}{2}\left((t_1)^2\sigma^2 + (t_2)^2\sigma^2\right) \, dx \, dt
= \lim_{T \to \infty} \int_{B_T \setminus B_U} -\lambda(R_{\text{sub}}^k) e^{-\frac{1}{2}\left((t_1)^2\sigma^2 + (t_2)^2\sigma^2\right)} \frac{2\pi^2}{\pi \sigma^2} \, dt
\geq \lambda(R_{\text{sub}}^k)e^{-\frac{1}{2}U^2\sigma^2}
\]
\[
Im\left(\lim_{T \to \infty} \int_{B_T \setminus B_U} \int_{R_{\text{sub}}^k} \frac{\varphi_{D(H_p)}^k(t) - \varphi_{D(H_q)}^k(t)}{(2\pi)^2} e^{-i(t,x)} \, dx \, dt \right)
= \lim_{T \to \infty} \int_{B_T \setminus B_U} \int_{R_{\text{sub}}^k} Im\left(\frac{\varphi_{D(H_p)}^k(t) - \varphi_{D(H_q)}^k(t)}{(2\pi)^2} e^{-i(t,x)} \right) \, dx \, dt
\leq \lim_{T \to \infty} \int_{B_T \setminus B_U} \int_{R_{\text{sub}}^k} -\frac{1}{2}\left((t_1)^2\sigma^2 + (t_2)^2\sigma^2\right) \, dx \, dt
= \lim_{T \to \infty} \int_{B_T \setminus B_U} \lambda(R_{\text{sub}}^k) e^{-\frac{1}{2}\left((t_1)^2\sigma^2 + (t_2)^2\sigma^2\right)} \frac{2\pi^2}{\pi \sigma^2} \, dt
\leq \lambda(R_{\text{sub}}^k)e^{-\frac{1}{2}U^2\sigma^2}
\]
Then as shown from Eq. 19 to Eq. 22, roughly speaking, the values of both the real part and the imaginary part of
\[
\lim_{T \to \infty} \int_{B_U} \int_{R_{sub}} \varphi^k_D(H_p)(t) - \varphi^k_D(H_\delta)(t) \langle dx \rangle dT
\]
\[
= \lim_{T \to \infty} \int_{B_U} \int_{R_{sub}} \frac{e^{-i(t_x)}(2\pi)^2}{2\pi^2} \langle dx \rangle dT
\]
\[
\geq \lim_{T \to \infty} \int_{B_U} \int_{R_{sub}} -\frac{1}{(t_1^2 + t_2^2)\sigma^2} \langle dx \rangle dT
\]
\[
\geq \lim_{T \to \infty} \int_{B_U} \int_{R_{sub}} -\frac{1}{(t_1^2 + t_2^2)\sigma^2} \langle dx \rangle dT
\]
\[
\geq -\frac{\lambda(R_{sub})e^{-\frac{1}{2}U^2\sigma^2}}{\pi\sigma^2}
\]

(22)

5. Experiments on Top-down Methods

While our method is primarily designed for bottom-up human pose estimation to optimize the body joints over sub-regions of the predicted heatmap at the same time, we here also test the effectiveness of our method on top-down human pose estimation methods. Specifically, we here apply our method on various top-down methods including Simple Baseline [10], HRNet [7], and HRFormer [11]. We set input size to 384 × 288 and following [7, 10, 11], we report the following metrics: AP, AP50, AP75, APM, APL, and AR. As shown in Tab. 1, after incorporating our method in various top-down methods, we also observe a consistent performance improvement. A possible reason for this is that our method enables the background sub-regions of the predicted heatmap and the sub-regions of the predicted heatmap around the body joint to be optimized simultaneously, which thus is also helpful for top-down human pose estimation.

Table 1. We also compare with top-down methods on the COCO val2017 set and the COCO test-dev2017 set. Though our method is primarily designed for bottom-up human pose estimation, we observe that it is also helpful for top-down methods.

<table>
<thead>
<tr>
<th>Method</th>
<th>Backbone</th>
<th>AP</th>
<th>AP50</th>
<th>AP75</th>
<th>APM</th>
<th>APl</th>
<th>AR</th>
<th>AP</th>
<th>AP50</th>
<th>AP75</th>
<th>APM</th>
<th>APl</th>
<th>AR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simple Baseline [10]</td>
<td>ResNet-152</td>
<td>75.0</td>
<td>90.8</td>
<td>82.1</td>
<td>67.8</td>
<td>78.3</td>
<td>80.0</td>
<td>73.8</td>
<td>91.7</td>
<td>81.2</td>
<td>70.3</td>
<td>80.0</td>
<td>79.1</td>
</tr>
<tr>
<td>+ Ours</td>
<td>ResNet-152</td>
<td>76.1</td>
<td>91.7</td>
<td>83.1</td>
<td>69.1</td>
<td>79.4</td>
<td>80.8</td>
<td>74.9</td>
<td>92.5</td>
<td>82.8</td>
<td>71.3</td>
<td>80.7</td>
<td>80.0</td>
</tr>
<tr>
<td>HRNet [7]</td>
<td>HRNet-W32</td>
<td>76.7</td>
<td>91.9</td>
<td>83.6</td>
<td>73.2</td>
<td>83.2</td>
<td>81.6</td>
<td>74.9</td>
<td>92.5</td>
<td>82.8</td>
<td>71.3</td>
<td>80.9</td>
<td>80.1</td>
</tr>
<tr>
<td>+ Ours</td>
<td>HRNet-W32</td>
<td>77.6</td>
<td>92.2</td>
<td>84.3</td>
<td>73.5</td>
<td>84.2</td>
<td>82.0</td>
<td>75.9</td>
<td>92.8</td>
<td>83.7</td>
<td>72.6</td>
<td>81.6</td>
<td>81.0</td>
</tr>
<tr>
<td>HRNet [7]</td>
<td>HRNet-W48</td>
<td>77.1</td>
<td>91.8</td>
<td>83.8</td>
<td>73.5</td>
<td>83.5</td>
<td>81.8</td>
<td>75.5</td>
<td>92.5</td>
<td>83.3</td>
<td>71.9</td>
<td>81.5</td>
<td>80.5</td>
</tr>
<tr>
<td>+ Ours</td>
<td>HRNet-W48</td>
<td>78.1</td>
<td>92.4</td>
<td>84.8</td>
<td>74.1</td>
<td>84.8</td>
<td>82.4</td>
<td>76.5</td>
<td>93.0</td>
<td>84.3</td>
<td>73.1</td>
<td>82.0</td>
<td>81.5</td>
</tr>
<tr>
<td>HRFormer [11]</td>
<td>HRFormer-Base</td>
<td>78.0</td>
<td>92.2</td>
<td>84.8</td>
<td>74.3</td>
<td>84.6</td>
<td>82.6</td>
<td>76.2</td>
<td>92.7</td>
<td>83.8</td>
<td>72.5</td>
<td>82.3</td>
<td>81.2</td>
</tr>
<tr>
<td>+ Ours</td>
<td>HRFormer-Base</td>
<td>78.7</td>
<td>92.4</td>
<td>85.3</td>
<td>74.9</td>
<td>85.2</td>
<td>83.1</td>
<td>76.9</td>
<td>93.1</td>
<td>84.6</td>
<td>73.5</td>
<td>82.6</td>
<td>81.9</td>
</tr>
</tbody>
</table>

6. Dataset Licenses

The COCO dataset [5] is licensed under the following Creative Commons Attribution 4.0 License. The CrowdPose dataset [4] is released for academic research only and it is free to researchers from educational or research institutes for non-commercial purposes.
References

