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Abstract

Personalized federated learning (pFL) collaboratively
trains personalized models, which provides a customized
model solution for individual clients in the presence of het-
erogeneous distributed local data. Although many recent
studies have applied various algorithms to enhance per-
sonalization in pFL, they mainly focus on improving the
performance from averaging or top perspective. How-
ever, part of the clients may fall into poor performance
and are not clearly discussed. Therefore, how to prevent
these poor clients should be considered critically. Intu-
itively, these poor clients may come from biased univer-
sal information shared with others. To address this issue,
we propose a novel pFL strategy, called Personalize Lo-
cally, Generalize Universally (PLGU). PLGU generalizes
the fine-grained universal information and moderates its bi-
ased performance by designing a Layer-Wised Sharpness
Aware Minimization (LWSAM) algorithm while keeping the
personalization local. Specifically, we embed our proposed
PLGU strategy into two pFL schemes concluded in this pa-
per: with/without a global model, and present the training
procedures in detail. Through in-depth study, we show that
the proposed PLGU strategy achieves competitive general-
ization bounds on both considered pFL schemes. Our exten-
sive experimental results show that all the proposed PLGU
based-algorithms achieve state-of-the-art performance.

1. Introduction
Federated Learning (FL) is a popular collaborative re-

search paradigm that trains an aggregated global learning
model with distributed private datasets on multiple clients
[19, 32]. This setting has achieved great accomplishments
when the local data cannot be shared due to privacy and
communication constraints [40]. However, because of the
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Figure 1. Toy example in a heterogeneous pFL on CIFAR10,
which includes 100 clients and each client obtains 3 labels.

non-IID/heterogeneous datasets, learning a single global
model to fit the “averaged distribution” may be difficult to
propose a well-generalized solution to the individual client
and slow the convergence results [27]. To address this
problem, personalized federated learning (pFL) is devel-
oped to provide a customized local model solution for each
client based on its statistical features in the private train-
ing dataset [7, 12, 14, 38]. Generally, we can divide existing
pFL algorithms into two schemes: (I) with a global model
[7, 26, 28, 44] or (II) without a global model [30, 31, 41].

Though many pFL algorithms make accomplishments
by modifying the universal learning process [45, 51] or en-
hancing the personalization [5, 30, 41], they may lead part
of clients to fall into poor learning performance, where the
personalization of local clients performs a large statistical
deviation from the “averaged distribution”. To the best of
our knowledge, none of the existing studies explore how
to prevent clients from falling into poor personalized per-
formance on these two schemes. For example, the poor
medical learning models of some clients may incur seri-
ous medical malpractice. To better present our concerned
problem, we introduce a toy example in Figure 1, which
is learned by two pFL algorithms representing these two
schemes: pFedMe [44] and FedRep [5]. Though both al-
gorithms achieve high averaged local model performance
of 66.43% and 71.35%, there also 15% of clients are less
than 64% and 14% clients are less than 69%, respectively.



This motivates us to exploit an effective strategy to prevent
clients from falling into poor performance while without de-
grading others, e.g., the green curve.

Intuitively, we consider this phenomenon oftentimes
comes from the biased universal information towards the
clients with better learning performance. For scheme I,
a simple-averaged aggregation may not perfectly handle
data heterogeneity, as it generates serious bias between the
global and local clients. For scheme II, abandoning the
universal contribution may dismiss some information from
other clients. Instead of designing a new pFL algorithm,
we propose a novel pFL strategy on existing pFL stud-
ies: generalizing the universal learning for unbiased local
adaptation as well as keeping the local personalized fea-
tures, called Personalize Locally, Generalize Universally
(PLGU). The main challenge of PLGU is to generalize uni-
versal information without local feature perturbation, as the
statistical information is only stored locally. In this pa-
per, we tackle this challenge by developing a fine-grained
perturbation method called Layer-Wised Sharpness-Aware-
Minimization (LWSAM) based on the SAM optimizer [9,
37], which develops a generalized training paradigm by
leveraging linear approximation. Furthermore, we present
how to embed this PLGU strategy with the perturbed uni-
versal generalization on both the two pFL schemes.

For scheme I (with the global model), we propose the
PLGU-Layer Freezing (LF) algorithm. As illustrated in
[24, 34, 52], each layer in a personalized model shares a
different contribution: the shallow layers focus more on lo-
cal feature extraction (personalization), and the deeper lay-
ers are for extracting global features (universal). Specifi-
cally, the PLGU-LF first explores the personalization score
of each layer. Then, PLGU-LF freezes the important layer
locally for personalization and uses the LWSAM optimizer
with the consideration of obtained layer importance score
for universal generalization. For scheme II (without the
global model), we mainly focus on our proposed PLGU
strategy FedRep algorithm [5], named PLGU-GRep. It gen-
eralizes the universal information by smoothing personal-
ization in the representation part. To show the extensibil-
ity, we present that we can successfully extend our PLGU
strategy to pFedHN [41], called PLGU-GHN, to improve
learning performance, especially for poor clients. Further-
more, we analyze the generalization bound on PLGU-LF,
PLGU-GRep, and PLGU-GHN algorithms in-depth. Exten-
sive experimental results also show that all three algorithms
successfully prevent poor clients and outperform the aver-
age learning performance while incrementally reducing the
top-performance clients.

2. Related Work
Various algorithms to realize pFL can be classified by

different measurements. From the universal learning per-

spective, we can divide the existing pFL algorithms into two
schemes: with or without a global shared model [22, 45].
Typically, algorithms on the scheme I (with a global model)
are mainly extended from the conventional FL methods, i.e.,
FedAvg [32] or FedProx [27], which combines the adaption
of local personalized features on local training updates pro-
cedure, such as fine-tuning [1, 33], regularized loss func-
tion [26,44], model mixture [4,6,31,36], and meta-learning
[7, 17].

Scheme II of pFL, i.e., without a global model, has more
diverse algorithms. [14,31] propose to train multiple global
models at the server, where similar clients are clustered into
several groups and different models are trained for each
group. However, these algorithms may incur huge com-
munication costs. In addition, some algorithms collabo-
ratively train the customized model with only layer-wised
transfer universally to enhance the personalization [30, 41].
Specifically, other algorithms address heterogeneity in pFL
by sharing some data [56] or generating additional data [16]
on the server, which may violate the privacy policy [45].

The generalization of deep neural networks has been
studied as an important topic, which can avoid the learn-
ing model to overfit the training dataset. Previous algo-
rithms usually add auxiliary changes to the standard train-
ing process, e.g., dropout [43], and normalization [15, 49],
which require the acknowledgment of training data that are
not feasible in pFL. More specifically, solving the mini-
max objective will incur large computational costs. Re-
cently, some studies in centralized learning [20,55] observe
that generalization is positively correlated to the sharpness
of the training loss landscape. Motivated by this, [9] de-
velops Sharpness-Aware Minimization (SAM), which uses
approximated weight perturbation to leverage generaliza-
tion by leveraging the first-order Taylor expansion. More-
over, [18,37] extend SAM to FL and graph neural network.

3. Problem Formulation and Strategy Design

3.1. Problem Formulation

The goal of pFL is to collaboratively train personalized
models on multiple clients by only sharing the model in-
formation while preserving the private local data. Gener-
ally, we conclude the pFL into schemes: scheme I (with
global model) [4, 5, 28, 34] and scheme II (without global
model) [30, 41]. Let N be the set of clients with the size
of N , where the non-IID distributed training data on i-th
client is denoted as Di = {(xi, yi)}, i ∈ N , xi, yi are the
corresponding data pair. For scheme I, let θi denote the per-
sonalized model of client i, the objective of both schemes
pFL can be formulated as follows:

min
w,{θi}N

i=1

1

N

N∑
i=1

Fi(w;θi), (1)



where Fi is the loss function of the client i associated with
its dataset Di, typically represented by the cross-entropy
loss FCE between the predicted and true label as Fi(θi) =
1
mi

∑mi

j=1 FCE(θi;x
j
i , y

j
i ), and mi is the number of data

samples. Note that the loss function Fi(w;θi) denotes that
the pFL objective takes either the global model w or person-
alized model θi as the target model for classification tasks.
Note that the objective function on scheme II can be formu-
lated as min{θi}N

i=1

1
N

∑N
i=1 Fi(θi).

3.2. Personalize Locally, Generalized Universally

Although existing pFL studies have great accomplish-
ments by enhancing personalization [4,5,28,30,34,41], they
cannot guarantee that all clients can achieve desired learn-
ing performance. Especially, as shown in Figure 1, only
focusing on personalization can lead to a biased pFL result,
where poor clients that perform much lower learning per-
formance suffer from the large client deviation. This phe-
nomenon happens because the universal information shared
across all clients may be not general enough or biased to-
wards some typical clients. Although common sense is that
the header of the neural network stores the personalization
and other layers obtain the universal information [5, 34],
only a few explore the importance of universal information
on personalization and show how to moderate the personal-
ization in the universal information. Therefore, in this pa-
per, we aim to propose a pFL strategy to address this issue
and prevent poor clients, called Personalize Locally, Gen-
eralize Universally (PLGU). Specifically, PLGU has two
main parts: (i) extracting the features towards personaliza-
tion and keeping them locally and (ii) generalizing the uni-
versal information.

To generalize the universal information, we leverage the
Sharpness Aware Minimization (SAM) algorithm [9] to be
the local optimizer. In SAM, the parameters of wi whose
neighbors within the ℓp ball are perturbed for a low training
loss FDi

through the following objective function:

FDi
(θ̃i) = max

∥ϵi∥p≤ρ
FDi

(θi + ϵi), (2)

where p ≥ 0, ρ is the radius of the ℓp ball, θ̃i = θi +

ϵi, and FDi(θ̃i) is the loss function of SAM on client i.
Considering the non-trivial effort to calculate the optimal
solution for the inner maximization, SAM uses one extra
back-forward gradient ascent step to approximate ϵ̃i:

ϵ̃i = ρ
∇θi

FDi
(θi)

∥∇θiFDi(θi)∥
≈ argmax

∥ϵi∥p≤ρ

FDi(θi + ϵi). (3)

As such, SAM computes the perturbed model θi +
ϵ̃i for the gradient in objective (2) as ∇θi

FDi
(θ̃i) ≈

∇θiFDi(θi)|θi+ϵ̃i . However, SAM adds perturbation on
the entire local model [9, 29, 37], which dismisses the inte-
rior impact of universal information. To generalize the fine-
grained universal information, we develop a Layer-Wise

Algorithm 1 PLGU(θ̃t,0
i , w̃t,0

i ,Λt
i,K, η).

1: Input: personalized model θ̃t,0
i , global model w̃t,0

i ,
scaling matrix Λt

i, number of local epochs K, learning
rate η;

2: for k = 0, . . . ,K − 1 do
3: Sample mini-batch Bi on client i;
4: Calculate unbiased gradient gt,k

i = ∇θ̃t,k
i

FBi
(θ̃t,k

i );

5: Update personalized model θ̃t,k+1
i = θ̃t,k

i − ηgt,k
i ;

6: Calculate perturbation ϵ̃t,ki by (5);
7: Calculate unbiased gradient approximation for

LWSAM g̃t,k
i = ∇w̃t,k

i +ϵ̃t,ki
FBi

(θ̃t,k
i + ϵ̃t,ki );

8: Update global model w̃t,k+1
i = w̃t,k

i − ηg̃t,k
i ;

9: end for

SAM (LWSAM) to be the local training optimizer inspired
by [29, 53]. Instead of simply applying the scaling to guide
the training update [29], we leverage the inner maximiza-
tion in LWSAM for the layer-wised scaling based on the
property of all clients. Let Λi denote a diagonal L×L ma-
trix, Λi = diag(ξi,1, . . . , ξi,L), where ξi,l is the layer per-
sonalization score. We apply the adopted scaling method to
the inner maximization of SAM on client i as follows:

FDi(θ̃i) = max
∥Λiϵi∥≤ρ

FDi(θi +Λiϵi). (4)

Note that the advantage of LWSAM can obtain fine-
grained universal information, because it adds more pertur-
bation to the personalized layers, i.e., a higher value of ξi,l
scales more perturbation and moderates the personalization
from the global model perspective. The layer-wised weight
perturbation in LWSAM is also solved by the first-order ap-
proximation of (4). Considering the added Λi, the approx-
imate inner solution of LWSAM can be written as follows:

ϵ̃i = ρsign(∇θi
FDi

(θi))Λi
|∇θi

FDi
(θi)|q−1

(∥∇θi
FDi

(θi)∥qq)p−1
, (5)

where 1
p + 1

q = 1. (5) provides the layer-wise calculation
of ϵ̃i to scale up the batch size on client i. Specifically, the
PLUG strategy based on the LWSAM algorithm is illus-
trated in Algorithm 1. In SAM, the first SGD step is only
to calculate the perturbation. But the LWSAM algorithm
can efficiently leverage the two output models. In particu-
lar, Lines 4-5 can obtain the personalized model, which aim
to seek the optimal point of the model parameter θ̃t,k

i . Lines
6-8 aim to seek the loss land surface w̃t,k

i . As such, both the
two SGD steps obtain the models θ̃t

i and w̃t for our learn-
ing goal. In the following two sections, we will present how
to calculate the layer personalization score Λi and how to
embed our proposed PLGU strategy into the two schemes
separately.



Figure 2. Illustration of PLGU-LF algorithm.

4. PLGU for Scheme I

4.1. PLGU-LF Algorithm

Although we also consider the pFL scheme I [26, 28, 34,
44], which includes a global model w and N personalized
local models wi at the same time, we should carefully de-
sign a more general global model w while not influencing
the personalization, i.e., both global and personalized mod-
els can prevent poor clients. For extracting personalization
features, we propose a distance metric for the l-th layer be-
tween the corresponding global model and local models to
determine the personalization degree of each layer on the
local model. The personalization score ξti,l of the scaling
matrix Λi can be calculated as follows:

ξti,l =
∥θ̃t

i,l − w̃t
l∥

dim(w̃t
l )

, (6)

where θ̃t
i,l and w̃t

l are the model parameters at the l-th layer
of the personalized model θ̃t

i and the global model w̃t.
dim(·) denotes the number of parameters on layer l, which
can normalize the values as

∑L
l=1 ξi,l = 1. Note that lever-

aging (6) to extract the personalization information does
not incur huge computational costs compared to inference
networks-based feature extraction [1, 28]. In addition, cal-
culating the personalization score Λi in (6) uses simple lin-
ear algebra, and thus the main computational cost of the
PLGU strategy comes from two steps SGD in LWSAM.

In this consideration, ξti,l measures the l-th layer dif-
ference between the personalized model θ̃t

i and the global
model w̃t, which quantifies the personalized contributions
of i-th local client to the l-th layer on the global model at
the communication round t. Intuitively, a larger value of
ξil indicates that the l-th layer of θ̃t

i deviates further from
w̃t, which indicates more contributions to personalization.
On the contrary, a layer with a smaller value of ξil has more
contributions to the universal information.

Hence, based on the personalization score ξti,l, we can
divide the layers of θ̃t

i into two categories, where the num-
ber of D largest values of ξti,l are categorized into the set

Algorithm 2 Scheme I: PLGU-LF algorithm.

1: Input: communication upper bound T , client set N ,
number of local epochs K, learning rate η;

2: Output: personalized model w̃T
i and global model

w̃T ;
3: for t = 0, . . . , T − 1 do
4: Sample a set of clients Ct ⊆ N with the size of C;
5: for each client i ∈ Ct in parallel do
6: Calculate Λt

i by (6);
7: Select D layers with largest ξti values to be the set

as Lt
i,Per and other layers are set as Lt

i,Uni;
8: θ̃t,0

i,LUni = w̃t
LUni and θ̃t,0

i,LPer = θ̃t
i,LPer

9: PLGU(θ̃t,0
i , w̃t,0

i ,Λt
i,K, η)

10: ∆t
i = w̃t,K

i − w̃t,0
i ;

11: w̃t+1 = w̃t+1 + 1
C

∑
i∈Ct ∆t

i;
12: end for
13: end for

of personalized layers l ∈ LPer
i , and others are into the set

of universal layers l ∈ LUni
i . To protect the personalization

locally, when client i receives the global model w̃t, it will
replace the universal layers in the wt

LUni and freeze its per-
sonalized layers to obtain a new personalized model θ̃t,0

i ,
i.e., θ̃t,0

i,LUni = w̃t
LUni and w̃t,0

i,LPer = w̃t
i,LPer . We call this al-

gorithm for the scheme I as PLGU-Layer Freezing (PLGU-
LF). Thus, the objective of PLGU-LF for the scheme I is:

min
w,{θi}N

i=1

max
{∥Λiϵi∥≤ρ}N

i=1

1

N

N∑
i=1

Fi(w̃; θ̃i), (7)

where w̃ = w + ϵ̃i, θ̃i = θi + ϵ̂i, and ϵ̂i,l = 0,∀l ∈ LUni
i .

We show the learning framework of PLGU-LF with 3
clients to learn a personalized 3-layered network in Fig-
ure 2, where each client freezes one personalized layer for
personalization, i.e., D = 1. In Algorithm 2, we intro-
duce the training procedure of PLGU-LF in detail. As a
result, the global model should be more suitable compared
to simply using SAM to be the local optimizer, because
PLGU-LF algorithm does not lose much universal informa-
tion sharing across all clients. From the personalization per-
spective, each client can receive more generalized universal
information as well as keep its personal features in order
to improve the performance of poor clients. Note that if
|LPer| = 0, PLGU-LF is equal to FedSAM [37]; otherwise,
i.e., |LPer| = L, it is the same as FedAvg [32]. Specifically,
suppose that the number of local training epochs of θ̃t

i is
equal to w̃t

i , the computational cost of PLGU-LF is equal
to state-of-the-art pFL in scheme I [26, 44]. Thus, our pro-
posed PLGU-LF does not incur more computational cost.

4.2. Generalization Analysis of PLGU-LF

In this subsection, we aim to analyze the gener-
alization bound of the PLGU-LF algorithm, which



can be presented as follows. Firstly, we define
the generalization gap of PLGU-LF algorithm as∣∣∑N

i=1
mi

m

(
minwi,i∈[N ] max∥ϵi∥2≤ρ,i∈[N ] Fi(w̃; w̃i) −

minw,wi,i∈[N ] max∥ϵi∥2≤ρ,i∈[N ] F̄i(w̃; w̃i)
)∣∣, where

Fi(·; ·) = EPi
[FCE(w̃; w̃i),x, y], Pi denotes the

local data distribution of client i and F̄i(·; ·) =
1
mi

∑mi

j=1[FCE(w̃; w̃i),xj , yj ] denotes the empirical
distribution. The following theorem aims to bound the
difference between the empirical and underlying margin-
based error for a general deep neural network function
based on [10,31,47,50]. The bound is based on the spectral
norms of the model parameter matrices across layers which
provide the upper bound for the Lipschitz and smoothness
coefficients of the corresponding neural network.

Theorem 1. Suppose that the loss function F is β-Lipschitz
and the input data x has ℓ2-norm bounded by B. For
depth-L and width-d neural networks, suppose that the
model parameter matrices in each of the L layers have
spectrum norm bounded by Ml. Then, ∀γ ∈ (0, 1), with
probability at least 1 − γ, we can upper bound the fol-

lowing generalization gap as O
(
β

(
B
√
L
∏

l∈L Ml

γ
√
m

+

(B+ρ)d
√
L logL

∏
l∈L Ml

γ
√
m

+
B
√
L
∏

l∈L Ml

γN
√
m̂

+

dD(L−D)
√
logD

∏
l∈LPer BMl

√
log(L−D)

∏
l∈LUni (B+ρ)Ml

γN
√
m̂

)
+√

m log 1
γ

)
, where m̂ = minmi,∀i ∈ [N ].

Different from the generalization bound of existing pFL
algorithms with two main items [6,8,31], the result in Theo-
rem 1 has four main items. The additional items come from
the perturbation. The first two items are from the global
model, which depends on the total number of data samples
m. The third and fourth items are based on the personalized
model, and hence they depend on the local dataset and the
number of clients N . In addition, the first and third items
are due to the marginal-based error [39]. And the second
and fourth terms are because of the perturbation (adversar-
ial error), which depends on the number of perturbed layers,
i.e., L−D. The adversarial error of the global model is on
all the layers, and the personalized model depends on the
number of universal layers.

5. PLGU for Scheme II
5.1. PLGU-GRep

In this section, we focus on instantiating the PLGU strat-
egy on scheme II without obtaining a global model. Exist-
ing studies for scheme II aim to share the learned univer-
sal information (usually not the full local models) across all
clients, e.g., cluster [46], multi-task learning [42], and [41]
hyper-network. However, none of studies discuss whether

the learned universal information is general enough or not.
FedRep [5] is one of the most popular pFL scheme II, which
is based on representation learning. The motivation of Fe-
dRep is that even if local datasets are highly heterogeneous,
we can still seek to share the common low-dimensional uni-
versal feature representation across all clients. In the main
paper, we will set our PLGU strategy on FedRep to improve
the generalization of the universal representation and pre-
vent the poor clients, named PLGU-GRep. To show the ex-
tensibility, we will embed our PLGU strategy on pFedHN
[41], named pFed-GHN, and present the detailed training
procedure and generalization analysis in supplementary.

Let θϕ denote the global representation, i.e., universal
information, which is a function parameterized by ϕ ∈ Φ,
and the specific heads θhi

, which are parameterized by hi ∈
H,∀i ∈ N . Specifically, the personalized model of client
i can be decomposed by the low-dimensional header and
representation θi = (θhi ◦θϕ). Therefore, the objective for
FedRep can be formulated as follows:

min
ϕ∈Φ

1

N

N∑
i=1

min
hi∈H

Fi(hi,ϕ), (8)

where the function Fi(hi,ϕ) := Fi(θhi ◦ θϕ). Although
the success of straightforwardly leveraging representation
to pFL has been demonstrated in [5, 48], they do not con-
sider which layers are more dominant on the universal in-
formation in Φ. As such, FedRep cannot guarantee that
all clients achieve the desired accuracy due to the biased
representation ϕ towards part of clients. Specifically, as
shown in the toy example in Figure 1, 22% of clients cannot
achieve 72% accuracy using the FedRep algorithm. There-
fore, we aim to seek a more generalized representation
ϕ̃t to prevent more clients from falling into poor perfor-
mance, and the objective function of (8) is re-formulated as
minϕ̃∈Φ

1
N

∑N
i=1 minhi∈H Fi(hi, ϕ̃). Note that the header

hi mainly obtains the personalization for client i, we can
update it by K epochs SGD as follows:

gt,k
i = ∇ht,k

i
FBi

(ht,k
i , ϕ̃t), ht,k+1

i = ht,k
i − ηgt,k

i (9)

When the local header hi updates finish, PLGU-GRep
comes into the representation ϕ̃ updates phase. Our design
goal is to generalize some specific layers towards personal-
ization. As such, we propose a two-step update to achieve
this. Firstly, similar to PLGU-LF, we also explore the per-
sonalization score Λt

i = diag(ξti,1, . . . , ξ
t
i,Lϕ),∀l ∈ Lϕi ,

where Lϕi is the layers set of ϕi with the size of Lϕ on
client i at communication round t, to determine the person-
alization contribution, i.e.,

ξti,l =
∥ϕ̃t

i,l − ϕ̃t
l∥

dim(ϕ̃t
l)

, (10)

Then, by leveraging PLGU strategy in Algorithm 1, we can
calculate the layer-wised perturbation ϵ̃ti and obtain a more
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Figure 3. Illustration of PLGU-GRep.

generalized ϕ̃t+1
i representation on client i at communica-

tion t as follows:

gt
i =∇ϕ̃tFBi

(ht,K
i , ϕ̃t), ϕt

i = ϕ̃t − ηgt
i , (11)

ϵ̃ti =ρsign(∇ϕt
i
FBi

(ϕt
i))Λ

t
i

|∇ϕt
i
FBi

(ϕt
i)|q−1

(∥∇ϕt
i
FBi(ϕ

t
i)∥

q
q)p−1

, (12)

g̃t =∇ϕt
i
FBi

(ht,K
i ,ϕt

i + ϵ̃ti), ϕ̃t
i = ϕt

i − ηgt
i . (13)

Based on (10)-(13), we can moderate the personaliza-
tion in the representation by adding more perturbation. The
description of our proposed PLGU-GRep is shown in Fig-
ure 3 and its detailed training procedure is illustrated in Al-
gorithm 3. Note that we only use one more SGD step to up-
date the ϕ̃t

i, and hence PLGU-GRep does not incur a huge
computational cost.

5.2. Generalization Analysis for PLGU-GRep

Here, we demonstrate the generalization bound of the
PLGU-GRep algorithm. Suppose that there exists a global
model F (h, ϕ̃), and then obtain the bound by Rademacher
complexity. The empirical loss of the global model
is F̄D(h, ϕ̃) = 1

N

∑N
i=1

mi

m

∑mi

j=1 FCE(x
i
j , y

i
j ;hi, ϕ̃).

For the expected loss of F (V , ϕ̃), F (h, ϕ̃) =
1
N

∑N
i=1

mi

m EPi [FCE(x, y;hi, ϕ̃)]. We assume that
the function F (·), hi,∀i ∈ [N ] and ϕ̃ are β-, βh- and
βϕ-Lipschitz.

Theorem 2. We assume that the local training model is a
depth-L and width-d neural network, the input data sample
is bounded by B, the model parameter matrices in each of
the layers have spectrum norm bounded by Ml,∀l ∈ Lϕ,
and the model parameter matrices of header h can be
bounded by Mh. ∀γ ∈ (0, 1) we can bound the generaliza-
tion gap of PLGU-GRep with probability at least 1 − γ as

O
(
β

(
βϕ(B+ρ)d

√
(L−1) log(L−1)

∏
l∈Lϕ Ml

γ
√
m

+ βhB
√
LMh

γN
√
m̂

+

βϕ(B+ρ)d
√

(L−1) log(L−1)
∏

l∈Lϕ Ml

γN
√
m̂

)
+
√

m log 1
γ

)
, where

Algorithm 3 Scheme II: PLGU-GRep algorithm.

1: Input: communication upper bound T , client set N ,
number of header local epochs K, learning rate η;

2: Output: personalized model θ̃T
i ;

3: for t = 0, . . . , T − 1 do
4: Sample a set of clients Ct ⊆ N with the size of C;
5: Download global representation ϕ̃t to client i ∈ Ct;
6: for each client i ∈ Ct in parallel do
7: for k = 0, . . . ,K − 1 do
8: Sample mini-batch Bi ⊂ Di;
9: Update the header ht,k

i by (9);
10: end for
11: Sample mini-batch Bi ⊂ Di;
12: Update the generalized representation ϕ̃t

i by (10)-
(13);

13: end for
14: Server updates the new representation ϕ̃t+1 =

1
C

∑
i∈Ct ϕ̃t

i;
15: end for

m̂ = minmi,∀i ∈ [N ].

Theorem 2 shows insights into the effect of perturbation
for PLGU-GRep, and indicates the generalization gap. The
first item is based on the aggregation of local generalized
representation ϕ̃i, which depends on the number of total
data samples m. Based on the local training by SGD on
the header hi and generalized local representation ϕ̃i, the
second and third items depend on the number of data sam-
ples on each client m̂ and the number of clients N . More
specifically, because the third item is related to LWSAM,
i.e., with perturbation, it includes the value of ρ, compared
to the second item.

6. Experiments
6.1. Experimental Setups

We use CIFAR10, CIFAR100 [21], and Tiny-ImageNet
(TmgNet) [23] datasets with various heterogeneous levels
and participation rates. We set up 100 clients for CIFAR10
and CIFAR100 datasets, and 20 clients for TmgNet dataset.
For the non-IID dataset, we simulate three non-IID data
simulations by assigning a fixed number of labels. Note that
the default number of labels on CIFAR10 is 3, CIFAR100
is 10, and on TmgNet is 30. The number of data samples
on each client is uniformly distributed. We set the num-
ber of local epochs K = 5, a number of universal layers
|LUni| = 5 and local batch size as 50, and the perturbation
ρ = 0.05 by default. We consider two participation schemes
C = 10 and 100 for CIFAR10 and CIFAR100, respectively.

We compare PLGU-LF, PLGU-GRep, and PLGU-GHN
algorithms with several state-of-the-art FL and pFL bench-
marks: FedAvg [32], FedSAM [37], Ditto [26], pFedMe



Table 1. Testing accuracy by the global model (averaged, top 5%, and lowest 5% accuracy) under three datasets.

Datasets C FedAvg FedSAM Ditto pFedMe PLGU-LF

CIFAR10
10 64.79 67.57 64.15 64.36 69.36

60.69 68.45 64.76 69.93 62.08 69.45 61.13 70.46 67.34 71.69

100 67.15 69.49 68.24 68.31 71.48
65.99 71.80 67.04 71.12 61.64 71.08 65.25 71.64 68.92 73.57

CIFAR100
10 55.86 57.19 56.35 55.17 59.74

51.21 60.75 54.82 59.55 52.73 59.28 50.41 58.35 56.85 61.49

100 58.00 59.39 58.93 57.24 61.07
55.16 60.67 56.73 61.20 56.64 60.79 52.96 60.53 58.25 62.25

TmgNet 20 37.78 38.42 38.09 36.43 40.61
32.26 43.73 34.61 42.02 34.75 42.84 31.79 42.90 35.41 43.56

Table 2. Testing accuracy by the personalized model (averaged, top 5%, and lowest 5% accuracy) under three datasets.

Datasets C Ditto pFedMe FedRep pFedHN PLGU-LF PLGU-GRep PLGU-GHN

CIFAR10
10 69.21 66.43 71.32 71.66 71.18 72.87 72.64

65.33 72.86 62.97 71.10 68.15 74.04 68.06 73.95 68.22 73.27 69.98 74.91 69.70 74.63

100 71.23 69.19 75.30 74.95 74.23 76.94 76.17
69.93 74.46 66.84 71.58 73.11 77.74 73.23 77.58 72.66 75.87 74.23 77.61 73.79 77.82

CIFAR100
10 59.17 56.58 62.92 63.25 62.33 64.61 65.37

57.81 63.06 52.92 60.14 59.70 65.95 59.86 65.79 60.08 65.24 62.58 66.62 63.02 66.94

100 62.52 58.57 65.08 65.54 64.67 66.79 66.30
59.48 64.81 55.79 61.73 62.60 67.96 63.30 68.09 63.72 67.75 64.81 68.59 64.27 68.02

TmgNet 20 39.41 37.22 41.68 41.96 41.39 42.84 42.45
35.88 43.49 32.76 42.91 37.53 45.07 37.94 45.19 37.46 44.57 40.29 45.18 39.92 44.89
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Figure 4. Convergence results evaluation of personalized models under three datasets.

[44], FedRep [5], and pFedHN [41]. To clearly show
the performance of our proposed algorithms on different
learning models, we use ResNet-18 [13], WideResNet28-
10 [54], and ResNet-50 [13] for CIFAR10, CIFAR100, and
TmgNet, with group batch. The HN includes 3 fully con-
nected layers. More experimental setups and results will be
presented in the supplementary.

6.2. Basic Performance Evaluations

We first evaluate the performance of the proposed algo-
rithms by analyzing the achieved model accuracy on pFL.
The results in Table 1 indicate that, compared to other
benchmarks on all three datasets, the proposed PLGU-LF
algorithm reaches the best global model accuracy (increas-

ing at least 2.55% than others) and does not degrade the
top clients. More importantly, we successfully prevent the
clients from falling into poor performance, where the 5%
lowest clients can achieve 56.85% accuracy with C = 10,
and increase accuracy by at least 2.03% for the lowest 5%
clients on CIFAR100. And the results of the personalized
model accuracy evaluation are shown in Table 2, where the
proposed algorithms outperform others, e.g., PLGU-GRep
achieves 72.64%, 69.70%, and 74.63%, on average, top 5%,
and lowest 5% on CIFAR10 with C = 10.

To show the learning performance from the convergence
perspective, we present the convergence curves in Figure 4.
It is easy to observe that the proposed PLGU-GRep and
PLGU-GHN achieve the best two convergence speeds.
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Table 3. Impact of number of local epochs K with C = 10.

K 1 5 10

PLGU-LF (G) 65.31 69.36 68.42
62.08 68.20 67.24 71.13 66.23 71.39

PLGU-LF (P) 67.43 71.18 70.40
64.25 70.01 68.22 73.17 65.76 73.54

PLGU-GRep 70.82 72.87 71.65
67.25 73.28 69.98 74.91 68.04 74.11

PLGU-GHN 69.93 72.64 72.91
66.89 73.15 69.70 74.63 72.91 75.48

6.3. Further Performance Evaluations

Due to the space limitation, we leverage the CIFAR10
for the ablation performance study for all the proposed al-
gorithms. Figure 5 studies the impact of the empirical num-
ber of LPer. Through observation, we can notice that when
D = 5, the proposed PLGU-LF algorithm achieves the best
performance in both personalized and global models. More
specifically, when D = 1 or 10, the performance does not
have obvious degradation. However, when D = 0 or 23, it
does not achieve the desired performance, which indicates
that no perturbation, e.g., FedAvg, and, e.g., full layers per-
turbation, e.g., FedSAM, are not efficient solutions.

In Figure 6, we show the results of personalized model
distribution across all clients under PLGU-LF, -GHN, and
-GRep. Compared to the toy example in Figure 1, we can
see that our proposed algorithms can significantly decrease
the deviation and prevent more poor clients (the accuracy
of all clients is larger than 75%), while not clearly reducing
the top clients.

We investigate the impact of local epoch number K on
the performance in Table 4, which achieve the best when
K = 5. Note that we use ”G” and ”P” to represent the
global and personal model performance of PLGU-LF. We
then explore the impact of ρ on LWSAM in Table 3. The
best performance is to set ρ = 0.05. In addition, when
we increase ρ = 0.5, the learning performance incurs large
degradation, which matches the results in [9, 29]. There-
fore, it is necessary to properly set the values of K and ρ to
achieve better performance.

Lastly, to visualize the universal generalization ability of
the proposed PLGU-LF algorithm, we show the loss sur-
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Figure 7. Loss landscapes visualization of PLGU-LF.

Table 4. Impact of perturbation ρ with C = 10.

ρ 0.05 0.1 0.5

PLGU-LF (G) 69.36 68.62 66.73
67.24 71.13 65.71 71.88 63.95 68.31

PLGU-LF (P) 71.18 70.96 69.05
68.22 73.17 69.15 74.68 66.89 73.50

PLGU-GRep 72.87 72.01 70.80
69.98 74.91 71.49 75.93 66.73 73.65

PLGU-GHN 72.64 70.49 67.30
69.70 74.63 68.18 74.73 64.84 74.69

faces for the global and personalized models, following the
settings in [25]. The results show that the global model is
more smooth, i.e., generalizing more universal information,
and the personalized model is sharper, i.e., protecting model
personalization on clients.

7. Conclusion

In this paper, we propose a novel PLGU strategy to pre-
vent clients from falling into poor performance without ob-
viously downgrading the average and top personalized per-
formance. This strategy aims to generalize the universal in-
formation while protecting the personalized features locally.
Specifically, we embed the PLGU strategy on two pFL
schemes and propose three algorithms, PLGU-LF, PLGU-
GRep, and PLGU-GHN by keeping the personalization lo-
cal and generalizing universal information. Further theoret-
ical investigation indicates that all the PLGU-based algo-
rithms can achieve competitive generalization bounds. The
extensive experimental results show that all the proposed
algorithms can successfully protect poor clients while not
degrading the average learning performance.
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A. Proof of Theorem 1

Before we show the proof of Theorem 1, we first state
some useful lemmas.

Lemma 1. Let the loss F is β-Lipschitz, Gu be the hypothe-
ses class for the global model, and Gp be the hypotheses
class for the personalized models. Let w̃∗, w̃∗

i be the op-
timal parameters of global and personalized models based
on proposed training estimates. Then, with probability at
least 1− γ, we have:

N∑
i=1

mi

m
(Fi(w̃

∗; w̃∗
i )− F̄i(w̃

∗; w̃∗
i ))

≤ β

(
RU (Gu) +RU (G̃u)

+

N∑
i=1

mi

m
(RP (Gpi) +RP (G̃pi))

)
+ 2

√
log 1

γ

m
.

Proof. This Lemma can be directly obtained by [31, 47],
and hence we omit the proof here. Note that the terms of
Rademacher complexity RU (Gu) of the global model and
RP (Gpi

) of the personalized model are due to the marginal
function, and the terms of RU (G̃u) of the global model and
RP (G̃pi

) of the personalized model are due to the perturba-
tion. □

Lemma 2. Let Gu be the class of real-valued networks of
depth L over the domain X of the global model, where each
parameter wl on layer l are at most Ml. Then, we have

RU (Gu) ≤
2B

√
d+ 1 + log(n)

∏L
l=1 Ml√

m

= O
(
B
√
L
∏L

l=1 Ml

γ
√
m

)
.

Proof. This lemma is revised by [10]. First of all, given the
domain of data samples X = {x : ∥x∥ ≤ B} in Euclidean
space, we consider (scalar or vector-valued) standard neural
networks as follows:

x → wLσL−1(wL−1σL−2(. . . σ1)(w1x)),

where each wl is the parameter matrix of l-th layer, and
each σl is some fixed Lipschitz continuous function be-
tween Euclidean spaces, which satisfies σl(0) = 0. And
we also define the ε = (ε1, . . . , εm) as a vector uniformly
distributed in {−1,+1}m. For a fixed value of γ > 0, we
can upper-bound the Rademacher complexity RU (HU ) as

follows:

mRU (Gu)

≤ 1

γ
logEε

[
sup exp

(
γ

m∑
j=1

εjwL−1σL−1(NwL−1
1

(xm))

)]

≤ 1

γ
logE

[
Ml ·

∥∥∥∥γ m∑
j=1

σL−1(NwL−1
1

(xj))

∥∥∥∥]

≤ 1

γ
log

(
2L · Eε

[
expMγ

∥∥∥∥ m∑
j=1

εjxj

∥∥∥∥]),
(14)

where M =
∏L

l=1 Ml. We denote xj,r as the r-th coordi-
nate of data sample xj . Based on symmetry, take an expec-
tation inside the log term can be bounded as follows:

Eε

(
Mγ ·max

r

∣∣∣∣ m∑
j=1

εjxj,r

∣∣∣∣)

≤
R∑

r=1

Eε exp

(
Mγ ·

∣∣∣∣ m∑
j=1

εjxj,r

∣∣∣∣)

≤ 2

R∑
r=1

Eε exp

(
Mγ

m∑
j=1

εjxj,r

)

= 2

R∑
r=1

m∏
j=1

Eε exp(Mγεjxj,r)

≤ 2

R∑
r=1

exp

(
M2γ2

m∑
j=1

x2
j,r

)

≤ L+ 1 + log(L)

γ
+M2γmax

j

M∑
m=1

x2
i,j

≤ 2Rmax
r

exp

(
M2γ2

m∑
j=1

x2
j,r

)
.

(15)

Plugging (15) to (14), we can obtain the following:

RU (Gu) ≤
d+ 1 + log(R)

γ
+M2γmax

r

m∑
j=1

x2
j,r

≤
2B

√
d+ 1 + log(n)

∏L
l=1 Ml√

m

= O
(
B
√
L
∏L

l=1 Ml

γ
√
m

)
.

This completes the proof. □

Lemma 3. Given the function class Gu of the global model,
and its corresponding adversarial function class function



G̃u, the generalization Rademacher complexity of deep neu-
ral networks RU (G̃u) can be upper-bounded as follows:

RU (G̃u)

≤ 24max{1, q
1
2−

1
p }(∥x∥+ ρ)

γ
√
m√√√√ L∑

l=1

dldl−1 log(3L)

L∏
l=1

Ml

= O
(
(B + ρ)d

√
L logL

∏L
l=1 Ml

γ
√
m

)
.

Proof: Firstly, we will bound the diameter of adversarial
diameter of class function G̃u based on the result in [50] as
follows:

|g̃u(xj , yj)| ≤
∏
l∈L

Ml max{1, q
1
2−

1
p }(∥x∥+ ρ) ≜ Z,

(16)
where p+ q = 1. Then, we develop the δ-covering number
N (G̃u, ∥ · ∥, δ) [3], which can be upper-bounded as follows:

N (G̃u, ∥·∥, δ) ≤
L∏

l=1

(
3Ml

δ

)dldl−1

=

(
3LZ

2δ

)∑L
l=1 dldl−1

.

The last equality is based on (16). Based on Dudley’s inte-
gral [2] and with at least 1 − γ probability, we can obtain
the following:

RU (G̃u) ≤
12

γ
√
m

∫ Z/2

0

√
N (G̃u, ∥ · ∥, δ)dδ

≤ 12γ√
m

∫ Z/2

0

√√√√( L∑
l=1

dldl−1

)
log(3LZ/2δ)dδ

=
12L

√∑L
l=1 dldl−1

γ
√
m

∫ 1/2

0

√
log(3L/2δ)dδ.

(17)

For the integration part in (17), we have∫ 1/2

0

√
log(3L/2δ)dδ

=
1

2

(
3
√
πerfc(

√
log 3L) +

√
3L

)
≤ 1

2

(
3
√
π exp(−

√
log 3L) +

√
log 3L

)
=

1

2

(√
π

L
+
√
log 3L

)
≤

√
log 3L.

(18)

Plugging (18) into (17), we have the following result:

RU (G̃u) ≤
24max{1, q

1
2−

1
p }(∥x∥+ ρ)

γ
√
m√√√√ L∑

l=1

dldl−1 log(3L)

L∏
l=1

Ml

= O
(
(B + ρ)d

√
L logL

∏
l∈L Ml

γ
√
m

)
.

This completes the proof. □

Lemma 4. Suppose that the function class Gp is the per-
sonalized model, and the corresponding adversarial func-
tion class function is G̃p. We simplify the generaliza-
tion Rademacher complexity of deep neural networks of
RP (Gpi

)+RP (G̃pi
) as RP (Gp)+RP (G̃p) for any client i,

and this Rademacher complexity can be upper-bounded as:

RP (Gp) +RP (G̃p) ≤
2B

√
d+ 1 + log(n)

∏L
l=1 Ml√

m̂

+
24

√
D(L−D)

γ
√
m̂

max{1, q
1
2−

1
p }∥x∥√ ∑

l∈LUni

dldl−1 log(3D)
∏
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Ml(∥x∥+ ρ)

√ ∑
l∈LPer

dldl−1 log(3(L−D))
∏

l∈LPer

Ml

= O
(
B
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L
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l=1 Ml
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√
m̂
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logD

γ
√
m̂∏

l∈LPer

BMl

√
log(L−D)

∏
l∈LUni

(B + ρ)Ml

)
.

Proof. The Rademacher complexity of RP (Gp) is easy to
be obtained by Lemma 2. Therefore, we mainly focus on
the RP (G̃p) in this lemma. This proof is inspired by [47].
We re-define the adversarial neural network as follows:

x → wLσL−1(wL−1σL−2(w̃L−2σL−3 · · ·w2σ1)(w1x)).

Note that the original layer model is denoted by wl, ∀l ∈
LUni and the perturbed layer model is denoted by wl, ∀l ∈
LPer. Then, we can obtain the diameter of G̃p as follows:

|gp(xj , yj)| = |wLσL−1(wL−1xj)|
≤ ∥wL∥ · ∥σL−1(wL−1xj)∥
= ML∥σL−1(wL−1xj∥

≤ ML∥wL−1xj∥ ≤
∏

l∈LUni

Ml · ∥xj∥
∏

l∈LPer

Ml · ∥x∗
j∥

≤ max{1, q
1
2−

1
p }

∏
l∈LPer

Ml · ∥x∥
∏

l∈LUni

Ml · (∥x∥+ ρ).

(19)



Due to the fact that the result in (19) includes two parts, we
need to re-define the δ-covering number of N (G̃p, ∥ · ∥, δ)
into two parts: δUni-covering N (GUni

p , ∥ · ∥, δ/(L−D)) and
δPer-covering N (GPer

p , ∥ · ∥, δ/D). Similar to the Lemma 3,
we can obtain the following:

N (G̃Uni
p ,∥ · ∥, δ/(L−D))

≤
L−D∏
l=1

(
3(L−D)Ml

δ

)dldl−1

≜ ZUni

N (GPer
p ,∥ · ∥, δ/D)

≤
D∏
l=1

(
3(L−D)Ml

δ

)dldl−1

≜ ZPer,

Then, we have:

RP (G̃p) ≤
12√
m

∫ ZUni

0

√
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p , ∥ · ∥, δ/(L−D))dδ∫ ZPer

0
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γ
√
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∫ 1
2

0

√
log(3L/2δ)dδ.

(20)

Based on the Lemma 3, we can obtain the following:

RP (G̃p) ≤
24
√
D(L−D)

γ
√
m

max{1, q
1
2−

1
p }∥x∥√ ∑
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dldl−1 log(3D)
∏
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Ml(∥x∥+ ρ)
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dldl−1 log(3(L−D))
∏
l∈Per

Ml.

(21)

Combing with the (21) and Lemma 2, we have:

RP (Gp) +RP (G̃p) = O
(
B
√
L
∏L

l=1 Ml
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√
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+
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logD

∏
l∈LPer BMl
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log(L−D)
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(B + ρ)Ml

)
.

This completes the proof. □
By leveraging Lemmas 1-4, we can directly obtain the

generalization bound as follows:

N∑
i=1

mi

m
(Fi(w̃

∗; w̃∗
i )− F̄i(w̃

∗; w̃∗
i ))

≤ β

(
RU (Gu) +RU (G̃u) +

N∑
i=1

mi

m
(RP (Gpi

)

+RP (G̃pi
))

)
+ 2

√
log 1

γ

m

= O
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B
√
L
∏L

l=1 Ml

γ
√
m
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(B + ρ)d

√
L logL

∏
l∈L Ml

γ
√
m

+
B
√
L
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dD(L−D)

√
logD

∏
l∈LPer BMl

γN
√
m̂√

log(L−D)
∏

l∈LUni

(B + ρ)Ml
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+ 2

√
log 1

γ

m
.

This completes the proof. □

B. Proof of Theorem 2
Before proving the Theorem 2, we first state some useful

lemmas.

Lemma 5. We assume that the local training model is a
depth-L and width-d neural network, the input data sample
is bounded by B, the model parameter matrices in each of
the layers have spectrum norm bounded by Ml,∀l ∈ Lϕ,
and the model parameter matrices of header h can be
bounded by Mh. ∀γ ∈ (0, 1) we can bound the general-
ization gap of PLGU-GRep with probability at least 1 − γ
as follows:

1

N

N∑
i=1

(F̄i(h
∗; ϕ̃∗)− Fi(h

∗; ϕ̃∗))

≤ β

(
βh

N∑
i=1

RH(Ghi
) + βϕ(RΦ(Gϕ) +RΦ(G̃ϕ))

)

+ 2

√
log 1

γ

N
.

Proof. The proof of this Lemma is similar to Lemma 1
and based on the Lipschitz assumption of β, βh and βϕ.
Therefore, we omit the details here. Note that the term
of Rademacher complexity RH(Ghi

) is for the header hi

based on the private dataset of client i and based on the
marginal function, the term of RΦ(G̃ϕ) is based on the
marginal function of the representation ϕ and RΦ(G̃ϕ) of
the representation are due to the perturbation. □



Lemma 6. Let Gv be the class of real-valued networks
of depth 1 over the domain X of the descriptor, which is
trained by SGD and based on local dataset Di. We assume
that each parameter of the header h is at most Mh. Then,
we have

RH(Gh) ≤
2B

√
d+ 1 + log(n)Mh

N
√
m̂

= O
(

BMh

γN
√
m̂

)
.

Proof. This proof is similar to Lemma 2, hence we omit
here. □

Lemma 7. Let Gϕ be the class of real-valued networks of
depth L − 1 and d over the representation ϕ, where each
parameter ϕl on layer l are at most Ml. In addition, we
assume that the representation can be also bounded by B.
Then, we have

RΦ(Gϕ) +RΦ(G̃ϕ)

≤
2B

√
d+ 1 + log(n)

∏
l∈Lϕ Ml

N
√
m̂

+
24

γ
√
N

max{1, q
1
2−

1
p }(∥ϕ∥+ ρ)

·
√∑

l∈Lϕ

dldl−1 log(3L)
∏
l∈Lϕ

Mh
l

=O
(
B
√
Lh

∏Lh

l=1 M
h
l

γN
√
m̂

+
(B + ρ)d

√
(L− 1) log(L− 1)

∏
l∈Lϕ Ml

γN
√
m̂

)
.

Proof. The Rademacher complexity of RΦ(Gϕ) +RΦ(G̃ϕ)
can be easily to extend from Lemmas 2 and 3. Note that
the difference is that the size of the representation is L − 1
(the whole model parameter without including the header).
In addition, the result is also related to the number of input
data samples m̂ and the number of clients N . □

Based on Lemmas 5-7, we can obtain the generalization
bound of PLGU-GRep as follows:

1

N

N∑
i=1

(F̄i(h
∗; ϕ̃∗)− Fi(h

∗; ϕ̃∗))

≤ β

(
βh

N∑
i=1

RH(Ghi) + βϕ(RΦ(Gϕ) +RΦ(G̃ϕ))

)

+ 2

√
log 1

γ

N

= O
(
β

(
βhBMh

γN
√
m̂

+ βϕ

(
B
√
Lh

∏Lh

l=1 M
h
l

γN
√
m̂

+
(B + ρ)d

√
(L− 1) log(L− 1)

∏
l∈Lϕ Ml

γN
√
m̂

)))
.

Figure 8. Illustration of PLGU-GHN.

C. PLGU-GHN
C.1. Algorithm of PLGU-GHN

Hypernetwork (HN) [11], where a set of deep neural net-
work parameters is capable of outputting the weights of an-
other network, has been studied in the pFL recently.

Specifically, [41] applies a learnable HyperNetwork
(HN) on the server to design a pFL algorithm, called
pFedHN. Due to its desirable performance, it has become
one of the most popular algorithms. Let h(·,ϕ) denote
the HN parameterized by ϕ and Fi(·,wi) represents the
i-th client target network parameterized by the personal-
ized model wi. The input of HN is the local model up-
dates ∆wt

i = ŵt
i −wt−1

i , where ŵt−1
i is the personalized

model trained by the local dataset of client i. The HN is
located at the server and acts on the i-th client descriptor
vi, which is considered a trainable embedding vector with
the personalized model representation. Given vi, the per-
sonalized model for the i-th client wi can be obtained as:

wi = wi(ϕ) := h(vi,ϕ). (22)

As such, the objective of scheme II with a learnable HN can
be formulated as follows:

min
ϕ,{vi}N

i=1

N∑
i=1

mi

m
Fi(h(vi,ϕ)). (23)

Although the success of straightforwardly integrating HN to
pFL has been demonstrated in [4,30], the structure of a ded-
icated vector in HN towards an individual client lacks the
consideration of collaborative learning, which cannot guar-
antee the clients with large distribution deviation to achieve
the desired accuracy. Because vi includes the independent
personalized information of each client, it may not degrade
the performance of personalized models. Therefore, the rea-
son for some poor performance clients may be due to the
fact that the parameter ϕ is biased to some particular clients,
from which ϕ contains the universal information. Note that
as HNs are naturally suitable for producing personalized



Algorithm 4 Scheme II: PLGU-GHN algorithm.

1: Input: communication upper bound T , client set N ,
number of local epochs K, learning rate η;

2: Output: personalized model wT
i ;

3: for t = 0, . . . , T − 1 do
4: Sample a set of clients Ct ⊆ N ;
5: for each client i ∈ Ct in parallel do
6: set wt

i = h(vt
i ;ϕ

t) and ŵt
i = wt

i ;
7: for k = 0, . . . ,K − 1 do
8: sample mini-batch Bi ⊂ Di;
9: wt,k+1

i = wt,k
i − η∇wt,k

i
FBi

(wt,k
i );

10: end for
11: end for
12: ∆wt

i = wt,K
i −wt,0

i ;
13: Calculate gt, ϕ̃t, and vt

i by (24) and (25);
14: end for

models, the main challenge of implementing PLGU comes
from improving the generalization of HN.

To address this issue, we propose the PLGU-Generalized
Hypernetwork (GHN) algorithm, which aims to smooth the
parameter ϕ to generalize HN for performing unbiased to
all clients. Note that the most important point for smooth-
ing the HN parameter ϕ is that we should consider the im-
pact on all clients. Therefore, the server first collects all
personalized model updates ∆wi, and trains as follows:

gt =
1

|Ct|
∑
i∈Ct

∇ϕt(wt
i)

⊤∆wt
i , ϵt = ρ

gt

∥gt∥
,

ϕ̃t = ϕ̃t−1 − α∇ϕt+ϵt(w
t
i)

⊤∆wt
i ,

(24)

where α is the learning rate of HN and ϕ̃ = ϕ + ϵ. The
updating of the descriptor vi is given by:

vt
i = vt−1

i − α∇vi(ϕ̃
t)⊤∇ϕ̃(w

t
i)

⊤∆wt
i . (25)

It is worth noting that since the updating of vt
i in (25) is

based on the perturbed ϕ̃, which can less influence the vt
i to

a particular direction and generate an unbiased result. Ac-
cording to our proposed training steps in (24) and (25), the
objective function (23) can be modified as:

min
ϕ,{vi}N

i=1

max
∥ϵ∥≤ρ

N∑
i=1

mi

m
Fi(h(vi,ϕ+ ϵ)). (26)

We introduce the implementation of the proposed
PLGU-GHN algorithm in Algorithm 4. Lines 4-11 present
the local training procedure: For the t-th communication
round, the subset of clients Ct are sampled from N ; the i-
th client in Ct downloads the latest personalized model wt

i

which is produced by the HN from the server as in (22);
then, the i-th client performs K epochs local SGD based on

its private dataset Di; Line 12 denotes that the local model
update ∆wi of client i is uploaded to the server for further
improving the generalization of HN. Lastly, Line 13 repre-
sents the update of hyper-parameter ϕ̃ and the correspond-
ing descriptor vi in the generalized HN. In particular, we
keep training the personalized model (descriptor) by local
SGD because it can maintain the personalization to fit the
private dataset. Moreover, after smoothing the HN parame-
ter ϕ, we can obtain more generalized universal information
in order to reduce the client variance.

C.2. Generalization Analysis for PLGU-GHN

Here, we investigate the generalization bound of the
PLGU-GHN algorithm. Different from pFedHN [41] only
focusing on the HN h(v,ϕ) by leveraging the results
in [3], we leverage the Rademacher complexity to ob-
tain the result of the whole learning model F (h(v, ϕ̃)).
Similar to the definition in PLGU-LF, we denote by
F̄D(V , ϕ̃) the empirical loss of the HN F̄D(V , ϕ̃) =
1
N

∑N
i=1

mi

m

∑mi

j=1 FCE(x
i
j , y

i
j ;h(vi, ϕ̃)). For the ex-

pected loss of HN F (V , ϕ̃), we define F (V , ϕ̃) =
1
N

∑N
i=1

mi

m EPi
[FCE(x, y;h(vi, ϕ̃))]. We assume that

vi,∀i ∈ [N ] and ϕ̃ are βV - and βh-Lipschitz.

Theorem 3. We assume that the local training model for
the descriptor is a depth-L and width-d neural network, the
input data sample is bounded by B, and the model param-
eter matrices in each of the L layers have spectrum norm
bounded by Ml. Suppose that the training model of HN is
a depth-Lh and width-dh neural network, the descriptor is
bounded by R, and the model parameter matrices of HN are
bounded by Mh

l . ∀γ ∈ (0, 1) we can bound the generaliza-
tion gap of PLGU-GHN with probability at least 1 − γ as
follows:

O
(
β

(
βv

B
√
L
∏L

l=1 Ml

γN
√
m̂

)
+ βh

(
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+ 2

√
log 1

γ

N
,

where m̂ = minmi,∀i ∈ [N ].

Theorem 3 shows insights into the parameter-sharing

effect of PLGU-GHN. The first part βv
B
√
L
∏L

l=1 Ml

γN
√
m̂

is based on the local training by SGD for train-
ing the descriptor vi, which depends on the num-
ber of data samples on each client m̂ and the num-
ber of clients N . On the other hand, the second part

βh

(
R
√
Lh

∏Lh
l=1 Mh

l

γ
√
N

+
(R+ρ)dh

√
Lh logLh

∏Lh
l=1 Mh

l

γ
√
N

)
is due

to updating the HN. It includes two items: the first one is
due to the marginal function and the second is due to the



perturbation. Note that this part depends on the number of
clients N and the size of descriptor R, where it does not
rely on the number of data samples since the parameters of
HN are not shared across clients.

Before proving the generalization bound of Theorem 3,
we firstly propose the following lemma for pFedGHN,
which is similar to Lemma 1:

Lemma 8. Let the loss F , h(V) and h(Φ) are β, βv and
βh-Lipschitz, GV be the hypotheses class for the descrip-
tor that is trained by local model updates with the private
dataset Di, and Gϕ be the hypotheses class for the HN. Let
v∗
i be the optimal parameters of descriptor and ϕ̃∗ be the

optimal parameters of HN based on proposed training esti-
mates. Then, with probability at least 1− γ, we have:

N∑
i=1

mi

m
(F̄i(v

∗;ϕ̃∗)− Fi(v
∗; ϕ̃∗))

≤ β

(
βv

m∑
mi

RV (Gvi
) + βh(RΦ(Gϕ)

+RΦ(G̃ϕ))

)
+ 2

√
log 1

γ

N
.

Proof. The proof of this Lemma is similar to Lemma 1
and based on the Lipschitz assumption of β, βv and βϕ.
Therefore, we omit the details here. Note that the term
of Rademacher complexity RV (Gvi

) is for the descriptor
vi based on the private dataset of client i and based on
the marginal function, the term of RΦ(G̃ϕ) is based on the
marginal function of the HN and RΦ(G̃ϕ) of the HN are due
to the perturbation. □

Lemma 9. Let Gv be the class of real-valued networks
of depth L over the domain X of the descriptor, which is
trained by SGD and based on local dataset Di. We assume
that each parameter wl on layer l are at most Ml. Then, we
have

RV (Gv) ≤
2B

√
d+ 1 + log(n)

∏L
l=1 Ml

N
√
m̂

= O
(
B
√
L
∏L

l=1 Ml

γ
√
m̂

)
.

Proof. This Lemma can be directly obtained by Lemma 2.
Therefore, we omit the details. □

Lemma 10. Let Gϕ be the class of real-valued networks of
depth Lh and dh over the descriptor, where each parameter
ϕl on layer l are at most Mh

l . In addition, we assume that

the descriptor can be bounded by R. Then, we have

RΦ(Gϕ) +RΦ(G̃ϕ)

≤
2R

√
dh + 1 + log(n)

∏Lh

l=1 Ml√
N

+
24
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Proof. The Rademacher complexity of RΦ(Gϕ) +RΦ(G̃ϕ)
can be easily to extend from Lemmas 2 and 3. Note that
the difference is that the input of HN is v, and hence the
number of input data samples are equal to the number of
clients N . □

By leveraging Lemmas 8-10, we can directly obtain the
generalization bound as follows:

N∑
i=1

mi

m
(F̄i(v

∗; ϕ̃∗)− Fi(v
∗; ϕ̃∗))
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(
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This completes the proof. □

D. Experimental Setups

D.1. Datasets and Neural Networks

All our experiments are conducted on a CPU/GPU clus-
ter with 4 NVIDIA V100 GPUs. We use PyTorch [35]
to train all the pFed algorithms. We use three benchmark
datasets, CIFAR10, CIFAR100 [21] and Tiny-ImageNet
[23], which represent a different number of data samples
and labels. The detailed descriptions of datasets and neural
networks are introduced in Table 5.



Dataset Labels Clients Total samples Neural network
CIFRAR-10 [21] 10 100 60,000 ResNet-18
CIFAR100 [21] 100 100 60,000 WideResNet28-10

Tiny-ImageNet (TmgNet) [23] 200 100 100,000 ResNet-50

Table 5. Descriptions of datasets and neural networks.

Table 6. Testing accuracy by the global model (averaged, top 5%, and lowest 5% accuracy) under three datasets (5 labels on CIFAR10, 20
labels on CIFAR100 and 50 labels on TmgNet).

Datasets C FedAvg FedSAM Ditto pFedMe PLGU-LF

CIFAR10
10 67.92 69.43 68.67 67.81 71.10

63.85 71.69 66.73 73.02 65.13 72.25 63.51 72.57 68.63 72.17

100 69.57 70.86 70.18 68.45 71.40
66.79 71.53 68.26 73.49 66.98 72.52 65.31 71.80 69.01 73.33

CIFAR100
10 59.08 60.24 59.37 56.22 61.38

56.65 63.12 57.10 62.73 56.94 63.03 53.85 60.92 59.05 63.30

100 60.71 61.35 60.94 58.15 62.09
58.50 63.24 59.75 63.91 58.30 64.02 56.76 61.48 60.97 64.84

TmgNet 20 39.12 40.17 39.35 37.79 42.21
34.48 43.85 37.93 44.15 36.04 42.28 32.89 41.97 39.07 44.54

Table 7. Testing accuracy by the personalized model (averaged, top 5%, and lowest 5% accuracy) under three datasets (5 labels on
CIFAR10, 20 labels on CIFAR100 and 50 labels on TmgNet).

Datasets C Ditto pFedMe FedRep pFedHN PLGU-LF PLGU-GRep PLGU-GHN

CIFAR10
10 71.42 68.79 73.43 73.07 72.82 74.34 74.18

68.41 74.56 67.37 73.05 69.89 75.53 70.18 75.09 70.20 74.35 72.67 75.61 72.13 75.26

100 73.19 71.14 74.66 74.73 74.75 75.42 75.25
70.51 75.70 69.88 74.43 72.46 76.42 73.25 76.76 73.59 76.62 74.13 77.04 74.19 76.89

CIFAR100
10 61.19 60.62 63.58 63.70 63.19 64.93 65.02

58.16 64.73 57.48 63.75 60.93 66.02 61.31 65.84 61.38 65.12 63.40 66.86 63.89 66.60

100 62.88 61.45 64.64 64.98 64.30 66.71 66.46
61.15 65.20 59.86 64.69 62.76 66.14 62.91 66.20 62.43 65.90 64.72 68.06 64.21 68.37

TmgNet 20 40.65 39.18 42.82 43.00 42.69 43.49 43.17
37.51 43.92 34.73 42.95 40.05 45.23 40.47 45.36 40.62 45.04 41.19 45.70 41.03 45.58

D.2. Hyper-parameter Settings

For pFedMe, FedAvg, and FedSAM algorithms corre-
sponding to the FL settings are used as an initialization. It
is then trained about a quarter of FedAvg training with a
learning rate of 0.01 on CIFAR10 and CIFAR100 datasets,
0.02 for the TmgNet dataset. For FedRep, the number of
local epochs for head and body updates were set to τ and 1,
respectively. For Ditto, the λ value used to control the regu-
larization term was set to 0.75. For the pFedHN algorithm,
we use a fully-connected HN with 5 hidden layers of 100
hidden units each.

We pre-allocate all training samples for validation on the
three datasets. The validation sets are used for hyperparam-
eter tuning by grid search. We search over learning rate
{0.001, 0.005, 0.01, 0.015, 0.02, 0.03}.

D.3. Architecture of HN

Figure 8 shows the training procedure of the PLGU-
GHN algorithm. And Figure 9 presents the architecture of
HN for pFedHN and pFedGHN algorithms in our experi-
ments. First, the hypernetwork uses an embedding layer to
generate and update the descriptor vi. Then, the descrip-
tor vector vi passes through several public fully connected
layers and generates an intermediate feature. Finally, the in-
termediate feature is sent to 3 fully connected layers which
correspond to 3 layers of local clients’ personalized mod-
els. The final fully connected layer output the aggregation
results for the personalized model of client i.

E. Additional Experimental Results
E.1. Additional Basic Performance

In this subsection, we show the performance on differ-
ent heterogeneous pFL settings of our proposed PLGU-LF,



Table 8. Testing accuracy by the personalized model (averaged, top 5%, and lowest 5% accuracy) under three datasets (8 labels on
CIFAR10, 50 labels on CIFAR100 and 100 labels on TmgNet).

Datasets C FedAvg FedSAM Ditto pFedMe PLGU-LF

CIFAR10
10 69.03 69.92 69.69 68.76 71.40

67.80 72.09 67.54 72.32 66.91 72.19 65.78 72.45 68.60 73.62

100 71.07 71.48 71.24 70.43 72.12
68.23 72.56 69.91 72.58 69.15 72.42 68.10 72.48 71.02 73.98

CIFAR100
10 60.79 62.02 61.41 58.30 63.06

57.29 64.15 58.97 64.18 58.44 63.89 54.31 62.25 60.14 64.82

100 62.43 63.16 62.47 60.52 63.06
60.41 64.59 61.08 64.94 60.25 64.38 57.59 63.02 61.94 65.20

TmgNet 20 40.36 41.24 40.51 38.93 43.05
36.18 45.43 38.20 44.09 37.65 44.18 34.86 42.94 40.75 45.62

Table 9. Testing accuracy by the personalized model (averaged, top 5%, and lowest 5% accuracy) under three datasets (8 labels on
CIFAR10, 20 labels on CIFAR100 and 40 labels on TmgNet).

Datasets C Ditto pFedMe FedRep pFedHN PLGU-LF PLGU-GRep PLGU-GHN

CIFAR10
10 72.04 70.74 75.36 75.89 75.01 76.58 76.79

70.09 74.73 67.32 73.98 73.25 78.04 74.16 77.39 74.12 76.58 74.64 78.45 74.61 78.70

100 73.98 73.04 76.71 76.60 76.25 77.18 77.51
73.26 77.80 66.38 72.41 73.76 78.49 73.97 78.52 74.08 77.76 76.30 79.46 75.88 79.63

CIFAR100
10 63.11 61.68 64.61 64.25 63.95 65.13 65.94

61.79 64.43 59.36 62.60 62.92 66.59 62.85 66.57 62.13 64.96 65.10 66.41 64.79 66.03

100 64.39 63.07 66.24 66.51 65.99 67.25 67.06
63.68 66.96 61.73 65.13 64.95 67.12 65.15 66.88 64.73 68.50 66.39 68.05 66.04 68.20

TmgNet 10 41.26 40.02 43.37 43.49 43.11 43.97 43.72
38.53 44.22 36.14 43.45 40.37 45.78 40.94 45.59 40.66 45.20 42.16 45.82 41.98 46.01

PLGU-GRep, and PLGU-GHN algorithms.

The additional experimental results of heterogeneous
pFL settings are presented in Tables 6-9. Firstly, we can
see that the less heterogeneous can improve the learning
performance for all algorithms, which matches the exist-
ing results. Moreover, the client variance also reduces in
less heterogeneous pFL settings. In particular, when each
client includes 50 labels on CIFAR100, the learning perfor-
mance of FedRep and pFedHN is higher than our proposed
algorithms. In addition, when the pFL setting is less hetero-
geneous, e.g., 100 labels on TmgNet, the averaged learn-

Figure 9. HN architecture of PLGU-GHN.

ing accuracy does not have obvious improvement compared
to 50 labels. It is because the distribution of the training
dataset is similar, and nearly to the performance of con-
ventional central machine learning. However, our proposed
PLGU strategy can also prevent the poor clients. Therefore,
we consider that our proposed PLGU-LF, PLGU-GRep, and
PLGU-GHN are more suitable for highly heterogeneous
pFL settings. More specifically, the performance of PLGU-
GHN is worse than PLGU-GRep is because the architecture
of HN is much simpler than local model.
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Figure 10. Further performance on CIFAR100 dataset.
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Figure 11. Further performance on TmgNet dataset.

Table 10. Impact of number of local epochs K with C = 10 on CIFAR100 and TmgNet datasets.

CIFAR100 TmgNet
K 1 5 10 1 5 10

PLGU-LF (G) 56.28 59.74 59.21 36.19 40.61 41.04
51.93 59.77 56.85 61.49 56.42 61.08 32.40 40.12 35.41 43.56 35.83 43.95

PLGU-LF (P) 59.65 62.33 61.82 38.57 41.39 41.94
57.35 62.76 60.18 64.54 59.33 64.69 34.69 40.92 37.46 44.57 37.35 45.13

PLGU-GRep 59.12 62.61 62.04 39.81 42.84 43.35
56.90 63.25 62.58 66.62 61.02 65.57 37.68 43.06 40.29 45.18 39.93 44.14

PLGU-GHN 60.68 64.97 64.34 40.30 42.45 43.07
59.31 63.16 63.02 67.94 62.70 67.89 37.76 43.39 39.92 44.89 39.43 44.50

Table 11. Impact of the value of perturbation ρ with C = 10 on CIFAR100 and TmgNet datasets.

CIFAR100 TmgNet
ρ 0.05 0.1 0.5 0.05 0.1 0.5

PLGU-LF (G) 60.74 60.31 59.25 40.61 40.93 40.04
57.85 62.49 57.06 61.87 58.43 59.96 35.41 43.56 35.89 43.90 37.02 41.52

PLGU-LF (P) 62.63 61.92 60.45 41.39 41.76 40.97
61.18 65.54 60.75 64.02 59.86 63.27 37.46 44.57 37.93 45.00 37.12 43.84

PLGU-GRep 65.41 65.03 63.74 42.84 43.17 42.03
63.58 67.62 63.15 67.59 62.70 67.42 40.29 45.18 40.64 45.45 39.36 44.13

PLGU-GHN 64.97 64.23 63.04 42.45 42.90 41.38
63.02 67.94 62.46 67.63 61.29 66.62 39.92 44.89 40.18 45.03 39.30 44.17
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