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Figure 1. Examples from four domain generalization benchmarks that manifest different types of domain shifts. In (a), image styles

differences are the main source for domain shifts. In (b), the domain shifts mainly correspond to the changes of environments and

viewpoints. In (c), the domain shifts are solely derived from the geometric differences. In (d), driving scenes changes are the main reason

for domain shifts.

1. More Details about Datasets

In the main paper, we have validated the effectiveness of

our Modality-Agnostic Debiasing (MAD) framework in a

variety of single domain generalization (single-DG) scenar-

ios with different modalities, including recognition on 1D

texts, 2D images, 3D point clouds, and semantic segmenta-

tion on 2D images. Here we provide more details about the

adopted datasets in the main paper. The statistics are listed

in Table 1.

In an effort to qualitatively show the domain shifts in dif-

ferent benchmarks, we further illustrate some examples in

Figure 1. One major observation is that the domain shifts

vary a lot between benchmarks. For example, the domain

shifts in images (Figure 1 (a), (b), (d)) mostly result from

the changes for image contexts, styles, and viewpoints. In

point clouds (Figure 1 (c)), the domain shifts primary corre-

spond to geometric variations. Existing single-DG methods

are commonly designed for images by devising various data

augmentation algorithms to introduce various textures and

image styles, making them modality-specific and only ap-

plicable to the single modality inputs of images. In contrast,

MAD proposes to directly enhance the classifier’s ability
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to identify domain-specific features while emphasizing the

learning of domain-generalized features. In this way, a ver-

satile modality-agnostic single-DG paradigm is established

by completely eliminating the need for modality-specific

data augmentations. MAD is also appealing due to the fact

that it can be seamlessly incorporated into existing single-

DG methods to further boost up performances.

2. More Results for Low-Frequency Compo-
nent vs. High-Frequency Component

For images, Low-frequency component (LFC) is com-

monly considered as domain-generalized features, while

High-frequency component (HFC) is regarded as domain-

specific features [8]. Here, we provide more results to sup-

port the capacity of MAD enforcing classifiers to pay more

attention to domain-generalized features, i.e., LFC. Here we

conduct additional experiments in the “Photo” and “Art” do-

mains on PACS benchmark. Implementation details are the

same as in the main paper. That is, for each instance in the

validation subset, we decompose the image into LFC and

HFC w.r.t different radius threshold r via applying Fourier

transform and inverse Fourier transform. Then, we train

the ERM and the ERM w/ MAD, separately, and evalu-

ate them on LFC and HFC. The results are summarized in
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Table 1. The statistics of benchmark datasets.

Dataset #Domain #Class #Sample Description Reference

PACS 4 7 9,991 Art, Cartoon, Photos, Sketches. [3]

VLCS 4 5 10,729 Caltech101, LabelMe, SUN09, VOC2007. [7]

PointDA 3 10 32,788 ShapeNet, ScanNet, ModelNet. [5]

AmazonReview 4 2 8,000 DVDs, Kitchen, Electronics, Books. [1]

GTA5→ Cityscapes 2 19 29,966 Semantic segmentation generalization from synthetic

images to realistic images.

[2, 6]

(a) LFC vs. HFC in “Photo” domain on PACS (b) LFC vs. HFC in “Art” domain on PACS 

Figure 2. Comparisons of ERM and ERM w/ MAD training curves on low-frequency component (LFC) and high-frequency component

(HFC). Experiments are conducted on PACS. All curves in this figure are from validation samples.
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Figure 3. Semantic segmentation illustration on unseen domain Cityscapes with model trained on GTA-5.

Figure 2, where r = 12/16low represents the LFC and

r = 12/16high depicts the HFC. As shown in this fig-

ure, we can conclude that MAD consistently encourages the

classifier focus more on those domain-generalized features.

3. More Results for Semantic Segmentation Vi-
sualization

Semantic segmentation models often suffer from per-

formance degradation due to scenario changes. We ex-

hibit more visualization results of semantic segmentation

in Figure 3. These examples further demonstrate the ef-

fectiveness of MAD when integrated into existing data-

augmentation based methods (e.g., DSU [4]).
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