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1. Source Model Preparing
As aforementioned, in this paper, we focus on the K-

way classification. For a given source domain Ds =
{(xs

i , y
s
i )}Ns

i=1 where xi
s ∈ Xs and yis ∈ Ys ⊂ R

K , we adopt

the same recipe as SHOT [7] and BMD [14] to prepare the

source model. Specifically, the source model fs parameter-

ized by a deep neural network consists of two modules: the

feature encoding module gs : Xs → R
d and the classifier

module hs : Rd → R
K , i.e., fs = hs ◦ gs. We optimize fs

with the following loss:

Lsrc = − 1

N

N∑

i=1

K∑

k=1

qk log δk(fs(x
i
s)) (1)

where δk(fs(xs)) denotes the softmax probability of source

sample xs belonging to the k-th category, qk is the

smoothed one-hot encoding of ys, i.e., qk = (1 − α) ∗
1[k=ys] + α/K, and α is the smoothing parameter which

is set to 0.1 for all benchmarks.

2. Experiments on Closed-set Adaptation
Existing methods designed for category shift, typically

do not perform well for the vanilla closed-set domain adap-

tation scenario (CLDA). To examine the effectiveness and

robustness of GLC, we further conduct experiments on

Office-31, and Office-Home. All implementation details

are the same as before, e.g., we adopt the ResNet-50 [5]

as the backbone, the learning rate is set to 1e-3, and ρ is

set to 0.75. The results are listed in Table 1 of this sup-

plementary material. As shown in this Table, despite the

fact that the GLC is not tailored for CLDA, we still at-

tain comparable or even better performance compared to

existing methods designated for CLDA, e.g., MDD [26].

Specifically, GLC obtains the overall accuracy of 88.1% and

70.4% on Office-31 and Office-Home, respectively. While

MDD attains 88.9% and 68.1% on Office-31 and Office-

Home, respectively. In a fairer comparison, GLC signifi-
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cantly outperforms UMAD [8], which is also model adapta-

tion method designed for category-shift. Specifically, GLC

outperforms UMAD by 6.4% and 7.3% on Office-31 and

Office-Home, separately.

3. Experiments on Realistic Applications
So far, most of existing methods usually perform ex-

periments only on standard computer science benchmarks.

Here, we have further validated the effectiveness and supe-

riority of GLC in realistic applications, including remote-

sensing recognition, wild-animal classification, and single-

cell RNA sequence identification. We present more details

in the following.

3.1. Partial-set Model Adaptation on Remote Sens-
ing Recognition

Remote sensing has great potential to manage global cli-

mate change, population movements, ecosystem transfor-

mations, and economic development. However, due to data

protection regulations [24], it is difficult for researchers to

obtain multi-scene, high-resolution satellite imagery. For

example, there are strict data regulation policies in China

for high-resolution remote sensing images in meteorologi-

cal, oceanic, and environmental scenarios [25]. To validate

the effectiveness of GLC on remote sensing, we conduct ex-

periments on two existing large-scale datasets, the Pattern-

Net [27] and the NWPU45 [1] dataset. PatternNet is one

of the largest satellite image datasets collected from Google

Earth imagery in the US. It contains 38 scene classes and

30,400 high-resolution (0.2 ∼ 6m per pixel) satellite im-

ages, such as airport, beach, dense residential, forest, etc.

NWPU45 dataset consists of 45 scene classes and 31,500

satellite images covering more than 100 countries and re-

gions around the world. Its spatial resolution varies from

about 30 to 0.2 m per pixel. The heterogeneity of spatial

resolution and geographic location poses a significant chal-

lenge to model adaptation. In this paper, we set the Pattern-

Net as source dataset and the NWPU45 as target dataset

to investigate the model adaptation from high-resolution

satellite images to low-resolution satellite images. There
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Table 1. Accuracy (%) comparison in CLDA scenario on Office-Home and Office-31. (Best in bold)

Methods SF OPDA OSDA PDA CLDA
Office-Home Office-31

Ar2Cl Ar2Pr Ar2Re Cl2Ar Cl2Pr Cl2Re Pr2Ar Pr2Cl Pr2Re Re2Ar Re2Cl Re2Pr Avg Avg

CDAN [10] � � � � � 49.0 69.3 74.5 54.4 66.0 68.4 55.6 48.3 75.9 68.4 55.4 80.5 63.8 86.6

MDD [26] � � � � � 54.9 73.7 77.8 60.0 71.4 71.8 61.2 53.6 78.1 72.5 60.2 82.3 68.1 88.9
UAN [23] � � � � � 45.0 63.6 71.2 51.4 58.2 63.2 52.6 40.9 71.0 63.3 48.2 75.4 58.7 84.4

CMU [3] � � � � � 42.8 65.6 74.3 58.1 63.1 67.4 54.2 41.2 73.8 66.9 48.0 78.7 61.2 79.9

DANCE [15] � � � � � 54.3 75.9 78.4 64.8 72.1 73.4 63.2 53.0 79.4 73.0 58.2 82.9 69.1 85.5

DCC [6] � � � � � 35.4 61.4 75.2 45.7 59.1 62.7 43.9 30.9 70.2 57.8 41.0 77.9 55.1 87.4

OVANet [16] � � � � � 34.5 55.8 67.1 40.9 52.8 56.9 35.4 26.2 61.8 53.8 35.4 70.8 49.3 70.4

Source-only � - - - - 44.8 67.4 74.2 53.0 63.3 65.1 53.7 40.5 73.5 65.6 46.3 78.3 60.5 78.8

UMAD [8] � � � � � 48.0 65.1 73.0 58.6 65.3 67.9 58.2 47.3 74.0 69.4 53.0 77.8 63.1 81.7

GLC � � � � � 51.2 76.0 79.9 65.4 78.6 78.7 65.6 54.1 81.6 70.9 58.4 84.2 70.4 88.1

are 21 overlapping scenes classes between PatternNet and

NWPU45. Thus, we transfer the scene classes from the Pat-

ternNet to the 21 overlapping scene classes in the NWPU45

and compare the results with the original labels from the

NWPU45 for performance evaluation.

An illustration of boxplot in Fig. 1b basically demon-

strates that GLC effectively realizes model adaptation and

achieves more accurate performance with less variance than

existing methods. Quantitatively, GLC achieves 64.6 ±
0.22% overall accuracy with 5 different random seeds. In

contrast to GLC, the baseline methods DCC, ETN, DANCE

and BA3US obtains 55.2 ± 0.80%, 54.9 ± 0.77%, 62.0 ±
1.02% and 59.6± 1.25% overall accuracy, respectively. To

verify the robustness, we further conduct an ablation exper-

iment on decreasing the number of overlapping scenes be-

tween source and target domains. The number gets smaller,

there is more probability of overlapping samples being cat-

egorized into other scenes. Despite this, the results in

Fig. 1c show that GLC is still capable of addressing this

challenge and even achieving better performance. Quanti-

tatively, GLC obtains 64.5% average accuracy in four dif-

ferent target situations. In contrast, the baseline methods

DCC, ETN, DANCE, and BA3US attains 55.4%, 55.0%,

52.4%, and 49.6% overall accuracy, respectively. We at-

tribute this to our global one-vs-all clustering algorithm,

which is able to discover non-existent scene categories and

suppress model adaptation over these categories.

3.2. Open-set Model Adaptation on Wild Animal
Classification

We next study a more challenging setting, the open-set

model adaptation on wild animal classification. Having

the ability to accurately classify wild animals is important

for studying and protecting ecosystems [12], especially the

ability to identify novel species [11]. However, it is almost

impossible for a database to cover all animal species, and it

is also typically difficult to collect and annotate a large num-

ber of wild animal images in practice. Thereby, it would be

ideal if we develop an animal classification system based

on the existing large number of virtual animal images on

the Internet. In this article, we execute experiments on

the I2AWA [28] benchmark to investigate open-set model

adaptation from virtual to real-world. I2AWA consists of

a virtual source domain dataset and a real-world target do-

main dataset with a total of 50 animal categories. We di-

vide the first 30 into known categories in alphabetical order

and the remaining 20 into unknown categories. The source

domain dataset consists of 2,970 virtual animal images col-

lected through the Google-Image search engine, while the

target domain dataset comes from the AWA2 [22] dataset

with a total of 37,322 images from the real world. Due to

differences in image styles between virtual and real-world

datasets, directly deploying a DNN model trained on the

virtual images can lead to severe performance degradation.

For a qualitative demonstration, we enumerate some ani-

mal images on target domain in Fig. 2a and apply the Grad-

CAM heatmap [19] technique to compare the source model

with the adapted target model by our GLC technique. From

this, we can conclude that the source model typically fails to

locate and extract key information for animal identification,

while the upcycled model overcomes these failures well.

For quantitative performance evaluation, we compare GLC

with the methods dedicated to open-set domain adaptation

(DANN [4], OSBP [17]), and the methods designed for uni-

versal domain adaptation (DANCE [15], OVANet [16]).

An inspection of the tSNE plots (Fig. 2b) indicates that

our GLC algorithm effectively realizes known animal clas-

sification and unknown animal separation. This observa-

tion is further demonstrated by the quantitative metric in

Fig. 2c. Specifically, GLC achieves 79.1±0.28% overall H-

Score. In contrast, the baseline methods DANN, OVANet,

OSBP and DANCE obtains 70.1 ± 0.85%, 70.8 ± 0.58%,

72.2 ± 1.61%, 74.5 ± 0.32% overall H-Score. As pre-

sented in Fig. 2d, compared to existing methods, GLC fur-

ther provides significant savings in target-domain side com-

putational resource overhead (about 48.4% training time re-
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Figure 1. Analysis of partial-set model adaptation on remote sensing recognition from high-resolution satellite images to low-
resolution satellite images. a, Example satellite images of different spatial resolutions on three scene classes, airfield, anchorage, and

bridge (from left to right). b, Accuracy rate of DCC, ETN, BA3US, DANCE, and GLC. Each boxplot ranges from the upper and lower

quartiles with the median as the horizontal line and whiskers extend to 1.5 times the interquartile range. c, Accuracy rate of DCC, ETN,

BA3US, DANCE, and GLC when applying on different target domain scenarios. d, Confusion matrix visualization of GLC and DCC.

Clearer diagonal structure indicates better overall accuracy.

duction in this case). This is due to the fact that our GLC

merely fine-tunes the source model to realize adaptation,

while existing source data-dependent methods need to train

the target models from scratch.

To visually assess the separation between the known

and unknown classes, we present the uncertainty density

distribution in the Fig. 2e. The higher the uncertainty,

the more the model treated the input animal image as an

unknown species. The results show that while OVANet

and DANCE are able to achieve promising classification

of known classes of animals, they have troubles in un-

known animal separation. In contrast, our GLC draws a

better trade-off between known animal classification and

unknown animal identification.

We further examine the robustness of GLC in differ-

ent open-set situations, e.g., varying target domain un-

known categories and source domain known categories.

As illustrated in Fig. 2f, we can find that GLC main-

tains a promising H-score compared to existing meth-

ods. Specifically, GLC achieves 78.3% overall H-Score in

four different target domain unknown categories situations,

while DANN, OSBP, OVANet, and DANCE obtains 69.3%,

72.9%, 70.8%, 75.4% average H-Score, respectively. Sim-

ilarly, when source domain known categories varies, GLC

arrives 83.4% overall H-Score in four different situations,

still significantly outperforming existing methods.

3.3. Open-partial-set Model Adaptation on Single-
cell Identification

We finally consider the most challenging scenario, open-

partial-set adaptation, where both source and target do-

mains contain private categories. Here, we implement ex-

periments on single-cell identification. It has great poten-

tial in the studies of cell heterogeneity, developmental dy-

namics, and cell communications [21]. Currently, there

are two main types of single-cell sequencing technologies,

namely scRNA-seq and scATAC-seq. However, it has been

noted that the extreme scarcity of scATAC-seq data tends

to limit its ability for cell type identification. In contrast,

large amounts of well-annotated scRNA-seq datasets have

been curated as cell atlases. It motivates us to upcycle

models trained on the scRNA-seq datasets and adapt them

to the scATAC-seq datasets. Nevertheless, the cell types

contained in different atlas data are generally inconsistent,
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Figure 2. Analysis of open-set model adaptation on wild animal classification from virtual images to real-world images. a. Example

wild animal images of the I2AWA dataset, and comparison of the feature heatmap images between the pre-trained source model and the

adapted target model. b. tSNE visualization of ground truth labels and GLC predicted labels. Each tSNE subplot is generated from

the same extracted features by our GLC. We apply gray to denote those animal species that are not presented in the source domain. c
H-Score rate of DANN, OVANet, OSBP, DANCE, and GLC. Each boxplot ranges from the upper and lower quartiles with the median as

the horizontal line and whiskers extend to 1.5 times the interquartile range. d, Target domain training time of DANN, OVANet, OSBP,

DANCE, and GLC. e, Uncertainty distribution of OVANet, DANCE, and our GLC for known and unknown animal categories. f, H-Score

rate of DANN, OVANet, OSBP, DANCE, and GLC when the number of target domain unknown animal categories and source domain

known animal categories varying.

which poses substantial challenges for model adaptation

across atlases. In this article, we apply our GLC to two

mouse cell atlases, the Tabula Muris atlas [18] for scRNA-

seq data and the Cusanovich atlas [2] for scATAC-seq data.

The Tabula Muris atlas consists of 73 cell types totaling

96,404 cells from 20 organs with two protocols profiling

transcriptomics, while the Cusanovich atlas consists of 29

cell types totaling 81,173 cells from 13 tissues. There are

19 cell types common between the Tabula Muris atlas and

the Cusanovich atlas. For performance evaluation, as in the

wild animal experiments above, we utilize the harmonic

mean accuracy H-Score of the known cell types and the

unknown cell types as the quantitative metric. We com-

pare our GLC with recently developed and applied methods

for scRNA-seq and scATAC-seq integration, including the

scJoint [9] and the Seurat v.3 [20].

We illustrate the tSNE plots in Fig. 3a to compare with

the ground truth labels annotated in the Cusanovich at-

las [2]. The tSNE plots are generated by applying the singu-

lar value of the term frequency-inverse document frequency
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Figure 3. Analysis of open-partial model adaptation on single-cell identification from scRNA-seq atlas to scATAC-seq atlas. a, tSNE

visualization of ground truth, GLC, scJoint, and Seurat predicted labels. We apply gray to indicate those cell types that are not presented

in the source domain scRNA-seq atlas. b, Uncertainty distribution of GLC, scJoint, and Seurat for cell types that are existed and absent

from the scRNA-seq atlas. The higher the uncertainty, the more the model tends to assign cell types to unknown that are absent from the

scRNA-seq atlas. The dashed line denotes the decision boundaries for known and unknown cell types prediction. c, Target-domain training

time of Seurat, scJoint and our GLC.

(TD-IDF) transformation of scATAC-seq peak matrix as in

the Cusanovich atlas [2]. It observes that GLC achieves

a better trade-off between known cell types identification

and unknown cell types separation than the other methods.

This observation is further quantitatively demonstrated by

the H-Score metric. Specifically, GLC obtains 62% over-

all H-Score compared with 58% for Seurat and 56% for

scJoint. As presented in Fig. 3c, not only is there a signif-

icant performance improvement, but our GLC also brings

significant savings in target domain computational resource

overhead (about 75.9% training time reduction).

In addition to tSNE plots, we also present the uncertainty

density distribution in Fig. 3b, where the higher the uncer-

tainty, the more the model tends to group the cell into the

unknown cell types group. To find the best trade-off point,

a global decision boundary search was performed for all

methods. The decision boundary for GLC is 0.5 compared

with 0.25 for Seurat and 0.05 for scJoint. It further indi-

cates that our GLC attains an optimal trade-off in cell types

identification to the other methods.

4. Discussion
During the past decades, deep neural networks (DNNs)

have achieved remarkable success in various applications

and fields. However, DNNs are typically restricted to the

training data domain. If the test data is collected in an-

other modality or from other types of instruments, we will

typically suffer from a significant performance degrada-

tion [13]. This phenomenon is likely to worsen when train-

ing and testing data do not share the same ground-truth class

space. Although DNNs can be adapted to different appli-

cation scenarios with additional supervised learning, this

paradigm asks for annotation of large-scale target domain

data. It would require significant resources and experts in

real-world applications, such as clinical staff for medical

imaging diagnosis and genetic scientists for single-cell se-

quence analysis, making it extremely expensive and impos-

sible for most scenarios. In this paper, we find that it is



possible to productively upcycle existing pre-trained mod-

els and adapt them to new scenarios. Numerous empirical

evidences on standard computer science benchmarks and

simulated realistic applications basically demonstrate that

GLC is a promising, simple, and general solution for a vari-

ety of real-world application tasks, including single-cell se-

quence analysis, remote sensing recognition, and other such

domain-dependent problems.
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