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1. Outline

This Supplementary adds details on top of the ones given
in the main paper. While the main paper stands on its own,
the details given here may shed more light.

In Sec. 2 we provide more details regarding our model;
considerations that led us to choose 3D convolutions and
edge rotation representation, a description of skeleton-
aware models in existing works, and a recap on the Style-
GAN architecture. Sec. 3 describes the W+ space used for
inversion, and the computation of the gral score, used for la-
tent motion editing. In addition, it provides a qualitative and
quantitative comparison with applications in other works.
Lastly, in Sec. 4 we elaborate on our experiments; we de-
scribe the datasets that we use, provide implementation de-
tails such as hyper-parameters, detail metrics, and show ad-
ditional ablation and additional qualitative results. In par-
ticular, we demonstrate how conditional networks can be
fine-tuned based on a one-time unconditional training, and
present quantitative and qualitative results to support this
approach. Finally, we provide a comparative analysis of un-
conditional methods.

2. Model – Additional Details

2.1. Structure-aware Neural Modules – Additional
Details

In this section we first describe our motivation for us-
ing 3D convolutions; then, we depict the way these convo-
lutions are used by our networks. Finally, for information
completeness, we describe skeleton-aware neural modules
from existing works and the way we use some of them in a
3D convolutional setting.

3D convolutions – motivation Described below are two
ways to design the filters of skeleton-aware convolu-
tions [2]. Recall that E, T , ℓ, and U denote the number of

entities and frames, the hierarchical level index, and the ker-
nel width, respectively.

• Existing works use 3D filters of dimension (Kℓ+1 ·
Eℓ+1)×(Kℓ · Eℓ)×U . Such filters are applied by the
neural model using 1D or 2D convolutions, over the
time axis or time and joint-channels axes, respectively.

• Our work uses 5D filters of dimension Kℓ+1×Kℓ×
Eℓ+1×Eℓ×U . These filters are applied by the neural
model using 3D convolutions, over the time and joint
axes, and an additional axis that holds the output joints,
to be described next.

The convolutions in existing works combine the joints
and the channels into the same dimension, yielding a non-
intuitive representation that adds complexity to coding. For
example, the output joints are received as channels, and re-
quire reshaping to be represented as joints. It is common
practice in most neural architectures to hold a dedicated di-
mension for the channels. Moreover, 3D filters introduce
complications when combined with the StyleGAN algo-
rithm, for two distinct reasons:

1. StyleGAN uses modulation, which is difficult to apply
if the channels and the joints share the same dimen-
sion, as the style is injected to each channel separately
(see Sec. 2.3). By using 3D convolutions, i.e. 5D fil-
ters, we place the channels in their own dedicated di-
mension, so modulation becomes simple.

2. StyleGAN uses transposed convolutions, in which the
axes are swapped such that the output and input chan-
nels switch places. Managing such a swap becomes
straightforward when the channel dimensions are sep-
arated from the joint dimensions.

Note that it is possible to keep using 3D filters as done in
other works. However, such usage, combined with Style-
GAN’s components, adds complexity (multiple data re-
shapes, weights reshapes, and dimension swaps).
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3D convolutions – details Figure 1 describes the way in
which our networks use 3D convolutions. As explained in
the main paper, we dedicate separate kernels to each joint.
To convolve each separate kernel with the data, we use dif-
ferent dimensions for the input and output joints. The output
joints axis is created by expanding the data by one dimen-
sion followed by zero padding, such that sliding the filters
along the new axis enables using different weights for each
output joint. Once convolution is completed, the result holds
the joints data in the output joint axis, and the input joint
axis becomes degenerated (of size 1) and is removed.

Recap existing neural modules The modules described
here are skeletal in-place convolution and skeletal pool-
ing [2, 8, 22, 24]. In our work, we create a 3D version of the
skeletal in-place convolutional filter and replace the skeletal
pooling by our novel convolutional scaler filter.

In Fig. 2 we show a skeletal pooling procedure. Pooling
is done by averaging the features of two entities, hence, it
is equivalent to a convolution with weights of 0.5. Our new
filter applies a convolution with learned weights, generaliz-
ing the pooling functionality, and allowing the network the
freedom to choose the optimal weights.

In Fig. 3 we depict our 3D version of a skeleton-aware
convolutional filter. Unlike our novel convolutional scaler
filter, this filter is an in-place one, which means it retains
the dimensions of its input, and cannot scale it.

2.2. Motion Representation Considerations

Some methods generate a sequence of 3D poses [8],
where each location is specified by the 3D coordinates of
each joint. However, the resulting representation is incom-
plete, since it does not reflect a rotation of a bone around
its own axis. In particular, it does not contain all the in-
formation necessary to drive a rigged virtual 3D character,
and the temporal consistency of the skeleton’s bone lengths
is not guaranteed. While joint rotations may be recovered
from joint positions via inverse kinematics (IK), the solu-
tion is not unique and thus ill-posed. Furthermore, models
that predict positions tend to yield a temporally jittery out-
put and require a post-processing smoothing stage. Due to
these considerations, we follow numerous recent works that
are based on joint rotation representation [15, 16]. The mo-
tion generated by MoDi can be directly converted into an
animation sequence without the need to apply either IK or
temporal smoothing.

Our network is trained on a single set of bone lengths.
Once a motion is generated, it can be retargeted to any other
set of bone lengths using existing motion retargeting meth-
ods [2, 3, 5].

2.3. Generative Network Architecture in Detail

In this section, we provide further details regarding the
architectural building blocks of MoDi. Some of the descrip-
tions recap StyleGAN [14] and are given here for informa-
tion completeness.

Generator In Fig. 4 we show additional details related to
the motion generator. In particular, we depict the usage of
modulation and demodulation [14], which has been shown
to be safer compared to AdaIN [12] in terms of certain ar-
tifacts. The AdaIN block processes data, namely normal-
izes it and applies a new standard deviation. The modula-
tion/demodulation block performs an equivalent (in expec-
tation) operation on the weights. Let u denote a weight value
within a filter, and let i, j, and k denote the input channel
index, output channel index, and filter spatial index, respec-
tively. Instead of multiplying the data by a new standard
deviation, we modulate the weights:

u′
ijk = si · uijk, (1)

and instead of normalizing the data, we demodulate the
weights:

u′′
ijk = u′

ijk

/√∑
i,k

u′
ijk

2. (2)

Discriminator Our discriminator, as well as its role in the
training procedure, is depicted in Fig. 5. Our discriminator
holds the reverse architecture of the synthesis network. That
is, it receives a generated or real motion and processes it
in neural blocks that gradually decrease in size. Like the
motion synthesis network, our discriminator is based on
structure-aware neural modules. In each hierarchical level,
the skeletal topology becomes coarser using skeletal convo-
lutions.

Losses The generative network is trained with several
losses. Our main loss is adversarial. In addition, we regu-
larize the generator with foot contact and with path length
and regularize the discriminator with R1. All losses except
for foot contact are used by StyleGAN too, and for com-
pleteness, we describe them here.

Adversarial loss We train our GAN with a non-
saturating adversarial loss [9],

LG
adv = − E

z∼Z
[logD(G(z))] , (3)

LD
adv = − E

m∼Mnat

[logD(m)] (4)

= − E
z∼Z

[log(1−D(G(z)))] .



Figure 1. Down sampling with our new filter (depicted 3D out of 4D, no channels): (a) Data at hierarchical level ℓ: Dimensions are
Kℓ ×Eℓ × Tℓ. We expand it by one dimension in preparations for 3D convolution. (b) Level ℓ data is further padded by zeros, and its new
dimensions are Kℓ × (2Eℓ+1−1)× Eℓ × Tℓ. (c) 3D convolution: The filter is slid within the data block. Sliding is along the x and y axes
only, as the z axis’ filter height is identical to the data height. (d) Resulting data: The extra dimension of size 1 is dropped such that final
dimensions at level ℓ+ 1 are Kℓ+1 × Eℓ+1 × Tℓ+1.

Figure 2. Skeletal pooling, not used by MoDi. The pooling oper-
ation merges two adjacent edges and removes the joint between
them. The unpooling operation splits an edge into two, and adds
a joint between the newly created edges. We denote skeletal hi-
erarchy levels with ℓ, ℓ + 1, ℓ + 2, and demonstrate pooling and
unpooling on selected joints in orange (levels ℓ, ℓ+1), and in green
(levels ℓ+ 1, ℓ+ 2).

Path length loss This loss [14] requires that a fixed-
size step in W results in a non-zero, fixed-magnitude
change in the generated motion.

LG
path = E

w∼W,r∼R

[∥∥JT
wG(w) ∗ r

∥∥
2
− a

]2
, (5)

where R is a unit Gaussian space normalized by the
number of joints and frames, Jw = ∂G(w)/∂(w), and a
is the accumulated mean gradient length.

R1 loss This loss [17] improves the functioning of the
discriminator:

LD
R1 = E

m∼Mnat

[
∥∇mD(m)∥22

]
. (6)

foot contact loss The foot contact losses, LG
tch and

LG
fcon are described in the main paper.

Altogether, the generator and discriminator losses are

Figure 3. Our 3D version of a skeleton-aware in-place convolu-
tional filter. Each horizontal slice (xy plane) is related to one en-
tity in the input character (left), and each vertical slice (xz plane)
is related to one entity in the output character (right). Each entity
in the output character “sees” only weights related to its neigh-
boring entities, emphasized with saturated colors in the filter. We
demonstrate convolutions on the left thigh and on the left forearm,
marked yellow in the output character. Note that each of these en-
tities is affected by its immediate neighbors and ignores entities
that do not neighbor it. Our filter is 5D and since we can only vi-
sualize 3D, we omit the channels. Recall that E, ℓ, and U denote
the number of entities, the hierarchical level index, and the kernel
width, respectively.

LG = LG
adv + λtchLG

tch + λG
fconLG

fcon, (7)

LD = LD
adv. (8)

We activate the regularizations LG
path and LD

R1 in a lazy
fashion, as done by Karras et al. [14].

2.4. Encoder – Description of W+

Our inversion method uses the W+ space, which is an
expansion of the latent space W , proposed by Abdal et
al. [1]. A tensor in W+ is a concatenation of several dif-
ferent w ∈ W vectors, one for each layer of the synthe-
sis network. Each vector in W+ is used as a modulation
input to a different layer. In contrast, when using W , the
same w vector is used for all layers. Abdal et al. [1] show
that W is limited and an inversion from arbitrary images is



Figure 4. Our motion generator in detail. (a) Adding style injection information to the architecture depicted in the main paper. A denotes
a learned affine transformation. This transformation is applied on the latent code w to produce a style code Sℓ, where ℓ is the hierarchical
level index. A different style code is injected to each layer. (b) Zoom in on the mapping network, which is an MLP with several linear
layers. (c) Zoom in on the motion synthesis network, where a style code S modulates the layer’s weight. The styled weight is then used
for a transposed convolution of the layer features. Recall that Rℓ, Pℓ and Fℓ denote the features in level ℓ of rotations, root positions and
foot contact labels, respectively. A transposed skeletal convolution applies the modulated weights on the data features from the previous
(coarser) hierarchical level. Since the convolution is transposed, it results with larger dimensions, both in the temporal axis and in the joints
axis.

Figure 5. Our discriminator holds the reverse architecture of the
synthesis network. It receives a generated or real motion, and
learns to output whether the input motion is real of fake. Us-
ing structure-aware neural modules, in each hierarchical level the
skeletal topology becomes coarser and the number of frames is di-
vided by 2.

much more accurate when using W+. In our experiments,
we have witnessed that this approach works for the motion
domain as well.

3. Applications – Additional Details
3.1. Latent Interpolation – Additional Details

In this section we elaborate on interpolation in the latent
space, referred to in the main paper. Figure 6, also shown in
the main paper, is copied here so we can further describe it.

Let w̄ be the mean of all w ∈ W , and let mean motion
denote G(w̄), the motion generated by it. The mean motion
is depicted at the bottom row of Fig. 6(a). This motion is
similar for all variations of trained networks and is what we
intuitively expect: an idle standing, front-facing character.

We demonstrate the linearity of the latent space W by
interpolating between the latent values and observing the
motions generated out of the interpolated values. A special
case, called truncation, is when the interpolation target is w̄.
In the imaging domain, truncation has an important role in
regularizing out-of-distribution images. We show that trun-
cation works well in our model too. A truncated sequence
is denoted by wi = ŵ + i

C (w̄ − ŵ), where ŵ ∈ W , C is
the number of interpolation steps, and i ∈ [0 . . . C]. Clearly
w0 = ŵ and wC = w̄. We can replace w̄ by any sampled
w̃ ∈ W , and then the sequence is called interpolated rather



Figure 6. Interpolation in the latent space: (a) interpolation to the
mean motion (truncation); (b) From sitting to walking: Note the
gradual change from crossed legs sitting, to regular sitting, stand-
ing, small-step walking, and regular walking. Each motion is natu-
ral, despite interpolating between sitting and standing, which can-
not be achieved by interpolating between joint values.

than truncated. Let mi = G(wi) denote the motion gener-
ated out of each wi. Fig. 6 (a) and (b) shows the motions
created out of truncation and interpolation, respectively.

We observe favorable characteristics in all interpolation
sequences. First, mi is semantically similar to mi−1, but it
also changed towards the semantics of the target mC . When
dealing with truncation, mi is always milder than mi−1.

Second, we notice that the interpolation is between
whole sequences rather than frames. For example, if in
mi−1 the character jumps occasionally, then in mi the char-
acter jumps in a similar frequency, but unnecessarily on the
same frames.

Lastly, there are no unnatural motions in the sequence,
although using simple geometric joint interpolation would
have resulted in unnatural motions. Fig. 6(b) demonstrates
this, where our latent interpolation yields natural motions
at all stages. A näive geometric interpolation of edge rota-
tions would result in an abnormal pose between sitting to
standing, with a vertical spine (see supplementary video).

For comparison, Fig. 8 (top) demonstrates interpolation
between “sit” to “walk” in ACTOR’s [18] latent space. As
can be seen, the resulting intermediate motion is “lift dumb-
bell”, questioning the linearity of their latent space.

3.2. Computing the gral Score

Our classifier computes the gral (gradual right arm lift-
ing) score in the following way. Let m = [R,S, F ] be a
selected motion. Recall R represents the rotation angles of
the motion. Let Rrs,t and Rre,t denote the rotations of the

SNR ↑
Aberman et al. [2] 18.89

Ours 16.16

Table 1. Quantitative results for the denoising application. Our re-
sults are comparable to Aberman et al.

right shoulder and the right elbow at time t, respectively.
Let [Rrs,t, ..., Rrs,t+8] be a temporal window of size 8. A
similar window is created for Rre. We compute the average
angle in each window and slide the window with a stride of
4. Altogether we get the average computed T/4 times for
both the right shoulder and the right elbow. Denote the se-
quence of average angles by αrs and αre. The next step is
to compute the difference between each element to the one
preceding it and obtain

scorersi =
{
1, if αrsi > αrsi−1

0, otherwise , (9)

scorerei =
{
1, if αrei > αrei−1

0, otherwise , (10)

where i ∈ [1, T/4− 1].
Clearly, if all scores are one, the arm is going up, and

if they are all zero, the arm is going down. The average of
all the values in the two score vectors is used as the final
attribute score.

3.3. Spatial Editing – Qualitative Comparison

To qualitatively compare our spatial editing application
with other works, we run the spatial editing process on state-
of-the-art ACTOR [18]. In Fig. 8 (bottom) we manually
raise both hands and lower them at mid-motion, yielding a
non-continuous unnatural motion. When passing the edited
motion through ACTOR’s autoencoder, the result is unfaith-
ful to the given motion. This is in contrast to the smooth and
natural results of MoDi, shown in the main paper.

3.4. Denoising – Quantitative Comparison

To evaluate the performance of our encoder in the de-
noising task, we construct a 4:1 training-to-validation split
and re-train our model only on the training set. We analyze
the test set by adding Gaussian noise to a given motion m,
resulting in m′. Then, G(I(m′)) is applied to all motions
in the test set, resulting in denoised motions. Finally, we
compute the mean signal-to-noise ratio (SNR) between the
ground truth and the denoised motions. To assess the perfor-
mance of our method, we compare our SNR results with the
ones computed for Aberman et al. [2] on the same training-
to-validation split. As can be seen in Tab. 1, the obtained
SNR values are comparable.



Figure 7. Qualitative results. The top motion depicts a synthesised wild dance, and the next two show synthesised jumps, illustrating the
diversity in semantically related motions. All motions are unconditionally generated. See more results in the supplementary video.

Figure 8. Qualitative comparison of our applications with state-
of-the-art ACTOR [18]. Top: latent space interpolation between
a sitting motion and a walking one. Bottom: spatial editing. Our
applications (see main paper) outperform ACTOR, highlighting
the effectiveness of our approach.

4. Experiments – Additional Details

4.1. Datasets

Mixamo – training and evaluation We construct our 3D
motion dataset using the Mixamo [4] 3D animation collec-
tion, which contains approximately 2500 extremely diverse
motions that are not constrained by any set of categories.
These motions are applied to 70 characters. Examples of
the motions in the dataset are elementary actions (jump-
ing, walking), dance moves (samba, hip-hop), martial arts
(boxing, capoeira), acrobatics (back/front flips, acrobatic
jumps), and non-standard motions (running on a wall, fly-
ing).

We generate our data samples by first extracting the
relevant edges from each motion (e.g., we drop the fin-
gers). Then we crop each motion to partially overlapping
sequences of frames, hence increasing the amount of data.

HumanAct12 – evaluation HumanAct12 [10] is not as
diverse as Mixamo and offers approximately 1200 motion



Name
Hierarchy

level
channels × joints × frames

Generator - 0 256 × 1 × 4
Motion Synth. Net. 1 128 × 2 × 8

2 64 × 7 × 16
3 64 × 12 × 32
4 32 × 20 × 64

Discriminator 0 32 × 20 × 64
1 64 × 12 × 32
2 64 × 7 × 16
3 128 × 2 × 8
4 256 × 1 × 4

Table 2. Architecture: Dimensions of all hierarchy levels.

Name Neural building blocks

Generator - Skeletal Conv. Scaler (upsample)
Motion Synth. Net. Skeletal Conv. (in-place)

Skeletal Convl (in-place)

Discriminator Skeletal Conv. (in-place)
Skeletal Conv. (in-place)

Skeletal Conv. Scaler (downsample)
Add Residual

Table 3. Architecture: Building blocks in hierarchical levels.
Skeletal operators are based on [2].

clips, organized into 12 action categories and 34 subcate-
gories. Due to its small number of motions, we use Human-
Act12 for quantitative comparison only.

UESTC – training and evaluation We use this dataset
for the conditional setting (Sec. 4.5) only. It contains 25K
sequences that span 40 categories of actions, with a primary
focus on exercises and some featuring circular motions.

4.2. Hyper-parameters and Training Details

In this section, we describe the details of the network
architectures. Tab. 2 describes the architecture of our gen-
erator and discriminator networks. The sizes of the kernels
are configurable by hyper-parameters, and in the table we
specify which hyper-parameters we have used for our best
model. Note that the number of joints varies according to
the topology of the skeleton on which the network is trained.
The values in Tab. 2 belong to the skeleton used by the
model presented in this work. The structure of each hierar-
chical level in our generator and discriminator is described
in Tab. 3. A hierarchy level in the motion synthesis network
contains input/output skips, and a hierarchy level in the dis-
criminator contains a residual skip, both based on Karras et
al. [14].

In our experiments, we use λfcon = 1, λtouch = 0.01,

batch size 16, learning rate 0.002 for both generator and
discriminator, mixing 0.9, and train for 80,000 iterations.
We use pytorch version 1.5.0, and CUDA version 10.1 on a
GeForce GTX 1080 Ti GPU.

4.3. Quantitative Metrics

Our metrics build upon the latent features of an action
recognition model. However, training such a model on Mix-
amo is challenging, as there are no action labels in it.

Our approach to this challenge is interdisciplinary. Mix-
amo has textual labels, and using the Sentence-BERT [19]
NLP model, we attain latent features representing the tex-
tual characteristics of each motion. Then we use K-means
to cluster the embedding, and use each cluster as a pseudo-
action label. With action labels at hand, we train an action
recognition model – STGCN [23]. The features extracted
from this trained model are then used for metrics calcu-
lation. We randomly sample 2000 motions for calculating
metric scores on the Mixamo dataset. We draw 1000 mo-
tions for scores on the HumanAct12 dataset since it is a lot
smaller.

Following is a brief description of each metric used for
the quantitative results.

FID Frèchet inception distance is the distance between
the feature distribution of generated motions and that of
the real motions, namely the difference in mean and vari-
ance. Despite its simplicity, FID is an important metric
widely used to evaluate the overall quality of generated mo-
tions [10, 18]. FID is borrowed from the image domain,
where the inception network is used for features. To adjust
this metric to the motion domain, we replace the inception
with an action recognition network. A lower value implies
better FID results.

KID Kernel Inception Distance (KID), proposed by
Binkowski et al. [6], compares skewness as well as the val-
ues compared in FID, namely mean and variance. KID is
known to work better for small and medium size datasets.
Lower values are better.

Precision and Recall These measures are adopted from
the discriminative domain to the generative domain [20].
Precision measures the probability that a randomly gener-
ated motion falls within the support of the distribution of
real images, and is closely related to fidelity. Recall mea-
sures the probability that a real motion falls within the sup-
port of the distribution of generated images, and is closely
related to diversity. Higher precision and recall values imply
better results.



Loss
Error Reconst.

(L2)
Reconst.

(L1)
Global root

position (mm)
Local

position (mm)
Global

position (mm)

all .293 .316 59.0 20.4 78.2

w/o LI
fcon .271 .293 57.0 21.2 76.0

w/o LI
pos .300 .321 47.0 47.7 93.7

w/o LI
root .319 .328 472.2 27.3 493.5

Table 4. Quantitative results for the encoder losses, on the Mixamo
encoder test set. Best scores are emphasized in bold, second best
are underlined.

Diversity This metric measures the variance of generated
motions [10, 18]. In the context of action recognition mod-
els, it measures the variance across all action categories, and
therefore it suits an unconstrained generator. The diversity
value is considered good if it is close to the diversity of
the ground truth. In all our experiments, the diversity of the
generated data was lower than the ground truth, so for clar-
ity we mark it with an upwards pointing arrow, implying
that in our case, higher is better.

4.4. Additional Ablation

In Tab. 4 we conduct an ablation study of the encoder
losses. The best scores are mostly obtained when not using
the foot contact loss, and the second best ones are mostly
obtained when using all losses. This is expected, as the foot
contact loss biases the results towards more accurate foot
contact on the account of other body parts’ accuracy. How-
ever, qualitatively, the human eye prefers coherent foot con-
tact, and in our supplementary video, the pleasing foot con-
tact results can be noticed. The phenomenon of foot con-
tact loss degrading the quantitative results, but upgrading
the qualitative ones, has been also reported in a concurrent
work, MDM [21].

As detailed in the main paper, the losses of the encoder
are a reconstruction loss LI

rec, a foot contact loss LI
fcon, a

root loss LI
root, and a position loss LI

pos. We measure the
performance of the encoder using several metrics. Recall
Mtst denotes the encoder test set, m denotes an unseen
motion, I denotes our trained encoder and G denotes our
trained generator.

Reconstruction L2 Error This is the most important
metric, as it makes sure the encoder is fulfilling its goal, i.e.
project a motion data structure into the latent space such that
the motion data structure generated from the projected value
is as similar as possible to the original one. This metric is
identical to the reconstruction loss, LI

rec, and is measured
with

EI
recL2 = E

m∼Mtst

[
∥m−G(I(m))∥22

]
. (11)

Repr.
Metric FID ↓ KID ↓ Diversity ↑ Precision ↑ Recall ↑

Velocity 11.3 .118 15.8 .470 .696

Location 10.7 .113 15.1 .468 .695

Table 5. Quantitative results for the root position representation,
on the Mixamo dataset. Best scores are emphasized in bold.

Reconstruction L1 Error Same as the previous metric,
but this time with L1. The error is measured by

EI
recL1 = E

m∼Mtst

[∥m−G(I(m))∥1] . (12)

Position Error In addition to the reconstruction error that
mainly measures rotation angle error, we measure the error
of the joint position itself. Since the global root position has
a large error component, we split the error into the global
root position error only, the local position error relative to
the root, and both accumulated together. These errors are
measured by

EI
rt= E

m∼Mtst

[
∥FK(m)rt−FK(G(I(m)))rt∥22

]
, (13)

EI
nrt= E

m∼Mtst

[
∥FK(m)nrt−FK(G(I(m))nrt)∥22

]
, (14)

EI
pos= E

m∼Mtst

[
∥FK(m)−FK(G(I(m)))∥22

]
, (15)

where FK is a forward kinematic operator yielding joint
locations, (·)rt is the root component of the position array,
and (·)nrt is the position array excluding its root compo-
nent.

In Tab. 5 we run an ablation study of the root position
representation. Predicting a root position that faithfully re-
flects the dataset and yields natural motions is challenging,
and many existing works either avoid predicting global po-
sition or predict it inaccurately, yielding a floating or jittery
appearance. We study two possible representations for the
root; a 3D location, or its velocity. The quantitative results
of the two representations are comparable, and yet, the qual-
itative results have been in favor of the velocity representa-
tion, hence our choice.

Overfitting Analysis Using 3D convolutions may raise
a concern about model overfitting. However, our 3D ker-
nel is sparse as it focuses on adjacent joints only, reduc-
ing such risk. To validate that the model does not overfit,
we construct a 4:1 training-to-validation split and re-train
our model only on the training set. Then we measure the
Chamfer distance between the generated samples and the



Ours w/ split Ours w/o split Train. Val.

Chamfer. to Train. 0.404 0.414 0.402 0.389

Chamfer. to Val. 0.466 0.461 0.519 0.492

Table 6. Overfitting analysis. Chamfer distance to training and val-
idation sets. The results refute overfit.

Figure 9. Our results on the UESTC dataset, after fine-tuning for
the action-to-motion task.

two splits, using the distance between the two splits them-
selves as baselines. When measured within one set, we ex-
clude the point itself, i.e., Chamfer(e, S\{e}). The results
in Table 6 show no significant difference in the distance be-
tween the model trained with split or without split (i.e. the
entire dataset) and a consistent pattern in the baselines, in-
dicating that our model has learned the distribution of the
training set, rather than simply memorizing it.

4.5. Additional Quantitative Results

Method FIDtrain ↓ FIDtest ↓ Accuracy↑ Diversity→ Multimod.→
Real 2.92 2.79 0.99 33.34 14.16

ACTOR [18] 20.49 23.43 0.911 31.96 14.52
INR [7] 9.55 15.00 0.941 31.59 14.68
MDM [21] 9.69 13.08 0.96 33.10 14.06

MoDi (ours) 10.30 14.40 0.90 33.61 13.94

Table 7. Evaluation of the action-to-motion network on the
UESTC [13] dataset. Our model is designed for a completely dif-
ferent task, which is unconstrained synthesis. While it outperforms
other works by a large margin for the unconstrained task (see
main paper), it is also comparable to models that were specifically
trained for the action-to-motion task.

In this section, we show that MoDi facilitates multi-
ple short fine-tunings for various conditions, based on a
one-time unconditional training. Conditional and uncondi-
tional synthesis are different problems and in a sense, con-
ditional training is easier as the labels assist in shaping the
latent space. Figure 9 and Tab. 7 show results obtained
by fine-tuning an unconditional model for the action-to-

motion task. Action-to-motion is the task of generating mo-
tion given an input action class, represented by a scalar. To
assess our model’s performance, we employ a set of metrics
proposed by Guo et al. [10], that includes Frèchet Incep-
tion Distance (FID), action recognition accuracy, diversity,
and multi-modality. This combination of metrics provides
a comprehensive measure of the authenticity and variety of
the generated motions. The same unconditional model can
be fine-tuned for other conditions (e.g., text, music).

4.6. Additional Qualitative Results

In Fig. 7 we show additional qualitative results. The
reader is encouraged to watch the supplementary video in
order to get a full impression of our results.

4.7. Comparative Discussion of Unconditional
Works

Unconditional motion synthesis is rarely studied. It is an
under-explored and quite important problem.

Holden et al. [11] are one of the first to generate hu-
man motion using deep learning. They introduce an un-
conditional autoencoder, which, unlike our model, is not
skeleton-aware. In their work, they train a separate feed-
forward network for each editing task. On the other hand,
MoDi’s disentangled latent space facilitates editing in the
latent space with no need to train an additional network, or
uses a single encoder for a variety of applications.

Yan et al. [22] (CSGN) introduce a conditional frame-
work but also mention an unconditional baseline. However,
as they do not provide any code, it is not possible to perform
a meaningful comparison to their approach. Their objective
is to generate long coherent actions, by sampling a sequence
of latent vectors from a Gaussian process and gradually in-
creasing the spatial and temporal resolutions of the graph.
The generation process is conditioned on a given prefix or
a few disjoint time ranges, and the rest of the time steps are
filled in. They achieve this by first transforming the condi-
tioning sequences into latent vectors using an inverse map-
ping network, then sampling the missing time steps in the
space of the latent vectors, and finally decoding them back
to motion space.

Degardin et al. [8] (KineticGAN) base their conditional
framework on an unconditional one, on which no results
are reported. Although conditional training is easier in a
sense (explained in Sec. 4.5), our unconditional results ap-
pear to be better in quality compared to their conditional
ones, shown in their paper and video. Their work combines
GANs and GCNs to generate human body kinetics. Simi-
lar to our approach, they also employ a mapping network
from StyleGAN [14]. However, their model does not utilize
critical aspects of StyleGAN, such as multi-level style in-
jection, which we show significantly improves the quality
of the synthesized motions.



Tevet et al. [21] (MDM) supports an unconstrained vari-
ation, and although they use state-of-the-art diffusion mod-
els, our work outperforms them in the unconditional set-
ting.
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